--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Whisper Small Frisian 10h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_6_1 args: 'config: frisian, split: test' metrics: - name: Wer type: wer value: 22.427374799500978 --- # Whisper Small Frisian 10h This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 6.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3402 - Wer: 22.4274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.0548 | 0.1070 | 100 | 1.0200 | 52.0620 | | 0.6944 | 0.2139 | 200 | 0.7126 | 39.6222 | | 0.6024 | 0.3209 | 300 | 0.6052 | 36.0791 | | 0.4697 | 0.4278 | 400 | 0.5303 | 32.5040 | | 0.4222 | 0.5348 | 500 | 0.4780 | 30.0766 | | 0.4075 | 0.6417 | 600 | 0.4458 | 28.4691 | | 0.374 | 0.7487 | 700 | 0.4151 | 26.9292 | | 0.3381 | 0.8556 | 800 | 0.3949 | 25.4678 | | 0.3235 | 0.9626 | 900 | 0.3764 | 24.8904 | | 0.1861 | 1.0695 | 1000 | 0.3643 | 23.5716 | | 0.1554 | 1.1765 | 1100 | 0.3608 | 23.4183 | | 0.1639 | 1.2834 | 1200 | 0.3511 | 23.0298 | | 0.1453 | 1.3904 | 1300 | 0.3449 | 22.6591 | | 0.1531 | 1.4973 | 1400 | 0.3419 | 22.4452 | | 0.1299 | 1.6043 | 1500 | 0.3402 | 22.4274 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1