# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple, Union import torch from torch import nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss import torch.utils.checkpoint from transformers import PreTrainedModel, add_start_docstrings from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_outputs import SequenceClassifierOutputWithPast from transformers.utils import logging, add_start_docstrings_to_model_forward, replace_return_docstrings from transformers.configuration_utils import PretrainedConfig from einops import rearrange, repeat from .configuration_baichuan import BaiChuanConfig logger = logging.get_logger(__name__) HAS_FLASH_ATTN = False try: from flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache, flash_attn_func from flash_attn.layers.rotary import apply_rotary_emb_func HAS_FLASH_ATTN = True except ImportError: logger.warning( "flash-attention is not installed correctly. " ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=1e6, device=None, interleaved=False): super().__init__() self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.base = base self.dim = dim # Build here to make `torch.jit.trace` work. self.max_seq_len_cached = 0 self.interleaved = interleaved def forward(self, q, k, seqlen_offset=None): # x: [bs, num_attention_heads, seq_len, head_size] # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. seq_len = q.shape[1] + seqlen_offset if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len self.inv_freq = 1.0 / ( self.base ** (torch.arange(0, self.dim, 2).float().to(self.inv_freq.device) / self.dim)) t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) # freqs = torch.einsum("i,j->ij", t, self.inv_freq) # dont use this, bug in fp16 freqs = torch.outer(t, self.inv_freq) self.cos_cached = freqs.cos().to(q.device) self.sin_cached = freqs.sin().to(k.device) return apply_rotary_emb_func( q.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:], self.interleaved, True # inplace=True ).to(q.dtype), apply_rotary_emb_func( k.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:], self.interleaved, True # inplace=True ).to(k.dtype) class MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: BaiChuanConfig, num_heads): super().__init__() self.config = config # print(num_heads) self.num_heads = config.num_attention_heads self.head_dim = config.hidden_size // config.num_attention_heads self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.num_kv_heads = config.num_kv_heads self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + 2 * self.num_kv_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) self.cos, self.sin = None, None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, seqlen_q, _ = hidden_states.size() past_len = 0 attn_weights = None if past_key_value is not None: cache_k, cache_v, past_len = past_key_value new_len = past_len + hidden_states.size(1) if new_len > cache_k.size(1): cache_k = torch.cat([cache_k, torch.empty(bsz, 256, cache_k.size(2), cache_k.size(3), dtype=cache_k.dtype, device=cache_k.device)], 1) cache_v = torch.cat([cache_v, torch.empty(bsz, 256, cache_v.size(2), cache_v.size(3), dtype=cache_v.dtype, device=cache_v.device)], 1) proj = self.W_pack(hidden_states) proj = rearrange(proj, 'bs seq_len (n_head head_dim) -> n_head bs seq_len head_dim', head_dim=self.head_dim) q = rearrange(proj[:self.num_heads], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim') k = rearrange(proj[self.num_heads:self.num_heads + self.num_kv_heads], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim') v = rearrange(proj[self.num_heads + self.num_kv_heads:], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim') # proj = rearrange(proj, 'bs seq_len (qkv n_head head_dim) -> qkv bs seq_len n_head head_dim', # head_dim=self.head_dim, n_head=self.num_heads) # q, k, v = proj q, k = self.rotary_emb(q, k, seqlen_offset=past_len) if HAS_FLASH_ATTN and q.dtype != torch.float32: if past_key_value is not None: attn_output = flash_attn_with_kvcache( q, cache_k, cache_v, k, v, causal=False, cache_seqlens=past_len ) else: attn_outputs = flash_attn_func( q, k, v, causal=True, return_attn_probs=output_attentions ) attn_output = attn_outputs[0] if output_attentions else attn_outputs attn_weights = attn_outputs[2] if output_attentions else None else: # fallback to pytorch impl if past_key_value is not None: cache_k[:, past_len:new_len] = k cache_v[:, past_len:new_len] = v attn_output = F.scaled_dot_product_attention( q.transpose(1, 2), cache_k[:, :new_len].transpose(1, 2), cache_v[:, :new_len].transpose(1, 2), attn_mask=attention_mask ) else: attn_output = F.scaled_dot_product_attention( q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=attention_mask ) attn_output = attn_output.transpose(1, 2) if use_cache: if past_key_value is not None: past_key_value = (cache_k, cache_v, past_len + seqlen_q) else: past_key_value = (k, v, seqlen_q) attn_output = attn_output.reshape(bsz, seqlen_q, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, attn_weights, past_key_value class DecoderLayer(nn.Module): def __init__(self, config: BaiChuanConfig, num_heads): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Attention(config=config, num_heads=num_heads) self.mlp = MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class PreTrainedModel(PreTrainedModel): config_class = BaiChuanConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, Model): module.gradient_checkpointing = value class Model(PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`] Args: config: BaiChuanConfig """ def __init__(self, config: BaiChuanConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([DecoderLayer(config, num_heads=self.get_num_heads(layer_id)) for layer_id in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_num_heads(self, layer_index: int): return self.config.num_attention_heads if 0 <= layer_index < self.config.num_hidden_layers // 4 or layer_index == self.config.num_hidden_layers-1: return 8 elif self.config.num_hidden_layers // 4 <= layer_index < self.config.num_hidden_layers // 2: return 4 elif self.config.num_hidden_layers // 2 <= layer_index < self.config.num_hidden_layers*3 // 4: return 2 else: return 1 def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, None) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class NormHead(nn.Module): def __init__(self, hidden_size, vocab_size, bias=False): super().__init__() self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size))) nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): norm_weight = nn.functional.normalize(self.weight) return nn.functional.linear(hidden_states, norm_weight) class BaiChuanForCausalLM(PreTrainedModel): def __init__(self, config): super().__init__(config) self.model = Model(config) # self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, ModelForCausalLM >>> model = ModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past