|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import torch.utils.checkpoint |
|
from transformers import PreTrainedModel, add_start_docstrings |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_outputs import SequenceClassifierOutputWithPast |
|
from transformers.utils import logging, add_start_docstrings_to_model_forward, replace_return_docstrings |
|
from transformers.configuration_utils import PretrainedConfig |
|
from einops import rearrange, repeat |
|
from .configuration_baichuan import BaiChuanConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
HAS_FLASH_ATTN = False |
|
try: |
|
from flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache, flash_attn_func |
|
from flash_attn.layers.rotary import apply_rotary_emb_func |
|
|
|
HAS_FLASH_ATTN = True |
|
except ImportError: |
|
logger.warning( |
|
"flash-attention is not installed correctly. " |
|
) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=1e6, device=None, interleaved=False): |
|
super().__init__() |
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.base = base |
|
self.dim = dim |
|
|
|
self.max_seq_len_cached = 0 |
|
self.interleaved = interleaved |
|
|
|
def forward(self, q, k, seqlen_offset=None): |
|
|
|
|
|
|
|
seq_len = q.shape[1] + seqlen_offset |
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
self.inv_freq = 1.0 / ( |
|
self.base ** (torch.arange(0, self.dim, 2).float().to(self.inv_freq.device) / self.dim)) |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
self.cos_cached = freqs.cos().to(q.device) |
|
self.sin_cached = freqs.sin().to(k.device) |
|
|
|
return apply_rotary_emb_func( |
|
q.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:], |
|
self.interleaved, True |
|
).to(q.dtype), apply_rotary_emb_func( |
|
k.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:], |
|
self.interleaved, True |
|
).to(k.dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
def custom_convolution(U, K): |
|
""" |
|
U: 输入矩阵, 形状为 (bs, seq, h, d) |
|
K: 卷积核, 形状为 (w, h) |
|
返回: 输出矩阵 V, 形状为 (bs, seq, h, d) |
|
""" |
|
h, w = K.shape |
|
padding = (w - 1, 0) |
|
U_padded = F.pad(U, (0, 0, 0, 0, *padding)) |
|
U_unfolded = U_padded.unfold(1, w, 1) |
|
K = K.unsqueeze(0).unsqueeze(0).unsqueeze(-2) |
|
V_unfolded = U_unfolded * K |
|
V = V_unfolded.sum(dim=-1) |
|
return V |
|
class Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: BaiChuanConfig, num_heads): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
self.hidden_size = config.hidden_size |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.num_kv_heads = config.num_kv_heads |
|
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + 2 * self.num_kv_heads * self.head_dim, |
|
bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) |
|
self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) |
|
self.cos, self.sin = None, None |
|
self.window = 2 |
|
self.K = nn.Parameter(torch.softmax(torch.randn((self.num_kv_heads,self.window)),dim=-1)) |
|
self.V = nn.Parameter(torch.softmax(torch.randn((self.num_kv_heads,self.window)),dim=-1)) |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, seqlen_q, _ = hidden_states.size() |
|
past_len = 0 |
|
attn_weights = None |
|
if past_key_value is not None: |
|
cache_k, cache_v, past_len = past_key_value |
|
new_len = past_len + hidden_states.size(1) |
|
if new_len > cache_k.size(1): |
|
cache_k = torch.cat([cache_k, |
|
torch.empty(bsz, 256, cache_k.size(2), cache_k.size(3), dtype=cache_k.dtype, |
|
device=cache_k.device)], 1) |
|
cache_v = torch.cat([cache_v, |
|
torch.empty(bsz, 256, cache_v.size(2), cache_v.size(3), dtype=cache_v.dtype, |
|
device=cache_v.device)], 1) |
|
|
|
proj = self.W_pack(hidden_states) |
|
|
|
proj = rearrange(proj, 'bs seq_len (n_head head_dim) -> n_head bs seq_len head_dim', head_dim=self.head_dim) |
|
q = rearrange(proj[:self.num_heads], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim') |
|
k = rearrange(proj[self.num_heads:self.num_heads + self.num_kv_heads], |
|
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim') |
|
v = rearrange(proj[self.num_heads + self.num_kv_heads:], |
|
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim') |
|
|
|
|
|
|
|
|
|
if past_key_value is None: |
|
k = custom_convolution(k, self.K) |
|
v = custom_convolution(v, self.V) |
|
self.last_k = k[:,-1:] |
|
self.last_v = v[:,-1:] |
|
else: |
|
self.last_k,k = k, self.K[:,:1]*self.last_k + self.K[:,1:]*k |
|
self.last_v,v = v, self.V[:,:1]*self.last_v + self.V[:,1:]*v |
|
q, k = self.rotary_emb(q, k, seqlen_offset=past_len) |
|
|
|
if HAS_FLASH_ATTN and q.dtype != torch.float32: |
|
if past_key_value is not None: |
|
attn_output = flash_attn_with_kvcache( |
|
q, |
|
cache_k, |
|
cache_v, |
|
k, |
|
v, |
|
causal=False, |
|
cache_seqlens=past_len |
|
) |
|
else: |
|
attn_outputs = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
causal=True, |
|
return_attn_probs=output_attentions |
|
) |
|
attn_output = attn_outputs[0] if output_attentions else attn_outputs |
|
attn_weights = attn_outputs[2] if output_attentions else None |
|
else: |
|
if past_key_value is not None: |
|
cache_k[:, past_len:new_len] = k |
|
cache_v[:, past_len:new_len] = v |
|
attn_output = F.scaled_dot_product_attention( |
|
q.transpose(1, 2), |
|
cache_k[:, :new_len].transpose(1, 2), |
|
cache_v[:, :new_len].transpose(1, 2), |
|
attn_mask=attention_mask |
|
) |
|
else: |
|
attn_output = F.scaled_dot_product_attention( |
|
q.transpose(1, 2), |
|
k.transpose(1, 2), |
|
v.transpose(1, 2), |
|
attn_mask=attention_mask |
|
) |
|
attn_output = attn_output.transpose(1, 2) |
|
if use_cache: |
|
if past_key_value is not None: |
|
past_key_value = (cache_k, cache_v, past_len + seqlen_q) |
|
else: |
|
past_key_value = (k, v, seqlen_q) |
|
|
|
attn_output = attn_output.reshape(bsz, seqlen_q, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config: BaiChuanConfig, num_heads): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Attention(config=config, num_heads=num_heads) |
|
self.mlp = MLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class PreTrainedModel(PreTrainedModel): |
|
config_class = BaiChuanConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, Model): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class Model(PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`] |
|
|
|
Args: |
|
config: BaiChuanConfig |
|
""" |
|
|
|
def __init__(self, config: BaiChuanConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([DecoderLayer(config, num_heads=self.get_num_heads(layer_id)) for layer_id in |
|
range(config.num_hidden_layers)]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
def get_num_heads(self, layer_index: int): |
|
return self.config.num_attention_heads |
|
if 0 <= layer_index < self.config.num_hidden_layers // 4 or layer_index == self.config.num_hidden_layers-1: |
|
return 8 |
|
elif self.config.num_hidden_layers // 4 <= layer_index < self.config.num_hidden_layers // 2: |
|
return 4 |
|
elif self.config.num_hidden_layers // 2 <= layer_index < self.config.num_hidden_layers*3 // 4: |
|
return 2 |
|
else: |
|
return 1 |
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class NormHead(nn.Module): |
|
def __init__(self, hidden_size, vocab_size, bias=False): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size))) |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states): |
|
norm_weight = nn.functional.normalize(self.weight) |
|
return nn.functional.linear(hidden_states, norm_weight) |
|
|
|
|
|
class BaiChuanForCausalLM(PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Model(config) |
|
|
|
|
|
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, ModelForCausalLM |
|
|
|
>>> model = ModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|