xun's picture
init
8bf83e9
import base64
import gzip
from dataclasses import dataclass
from typing import Dict, Iterable, Optional, List
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from subprocess import CalledProcessError, run, Popen, PIPE
import os
from functools import lru_cache
from typing import Optional, Union
def exact_div(x, y):
assert x % y == 0
return x // y
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
N_MELS = 80
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
def get_T_after_cnn(L_in, dilation=1):
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
L_out = 1 + L_out // stride
L_in = L_out
return L_out
def load_bytesio_audio(content, sr: int = SAMPLE_RATE):
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", "pipe:",
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"pipe:"
]
p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1)
out, _ = p.communicate(input=content)
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", file,
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"-"
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(
dim=axis, index=torch.arange(length, device=array.device)
)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array
def trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(
dim=axis, index=torch.arange(length, device=array.device)
)
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
return array
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
)
"""
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
with np.load(
os.path.join(os.path.dirname(__file__), "mel_filters.npz") # todo
# os.path.join("assets", "mel_filters.npz")
) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
def log_mel_spectrogram(
audio: Union[str, np.ndarray, torch.Tensor],
n_mels: int = N_MELS,
padding: int = 0,
device: Optional[Union[str, torch.device]] = None,
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 is supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
@dataclass
class ModelDimensions:
n_mels: int
n_audio_ctx: int
n_audio_state: int
n_audio_head: int
n_audio_layer: int
n_vocab: int
n_text_ctx: int
n_text_state: int
n_text_head: int
n_text_layer: int
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
# return super().forward(x.float()).type(x.dtype)
return super().forward(x).type(x.dtype)
class Linear(nn.Linear):
def forward(self, x: Tensor) -> Tensor:
return F.linear(
x,
self.weight.to(x.dtype),
None if self.bias is None else self.bias.to(x.dtype),
)
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
) -> Tensor:
return super()._conv_forward(
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
)
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
):
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
wv, qk = self.qkv_attention(q, k, v, mask)
return self.out(wv), qk
def qkv_attention(
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k
if mask is not None:
qk += mask
w = F.softmax(qk, dim=-1).to(q.dtype)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
):
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
if self.cross_attn:
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
x = x + self.mlp(self.mlp_ln(x))
return x
class AudioEncoder(nn.Module):
def __init__(
self,
n_mels: int,
n_ctx: int,
n_state: int,
n_head: int,
n_layer: int,
output_dim: int = 512,
avg_pool: bool = True,
add_audio_bos_eos_token: bool = True,
**kwargs
):
super().__init__()
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
)
self.ln_post = LayerNorm(n_state)
if avg_pool:
self.avg_pooler = nn.AvgPool1d(2, stride=2)
else:
self.avg_pooler = None
self.proj = nn.Linear(n_state, output_dim)
if add_audio_bos_eos_token:
self.audio_bos_eos_token = nn.Embedding(2, output_dim)
else:
self.audio_bos_eos_token = None
self.output_dim = output_dim
self.n_head = n_head
def forward(self, x: Tensor, padding_mask: Tensor=None, audio_lengths: Tensor=None):
"""
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
the mel spectrogram of the audio
"""
x = x.to(dtype=self.conv1.weight.dtype,
device=self.conv1.weight.device)
if audio_lengths is not None:
input_mel_len = audio_lengths[:,0] * 2
max_mel_len_in_batch = input_mel_len.max()
x = x[:, :, :max_mel_len_in_batch]
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.permute(0, 2, 1) # B, L, D
bsz = x.size(0)
src_len = x.size(1)
self.input_positional_embedding = self.positional_embedding[:src_len]
assert x.shape[1:] == self.input_positional_embedding.shape, f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}"
x = (x + self.input_positional_embedding).to(x.dtype)
if padding_mask is not None:
padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype,
device=self.conv1.weight.device)
batch_src_len = padding_mask.size(1)
x = x[:, :batch_src_len, :]
padding_mask = padding_mask.view(
bsz, -1, batch_src_len
)
padding_mask_ = padding_mask.all(1)
x[padding_mask_] = 0
key_padding_mask = padding_mask_.view(bsz, 1, 1, batch_src_len). \
expand(-1, self.n_head, -1, -1).reshape(bsz, self.n_head, 1, batch_src_len)
new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype)
padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf"))
for block in self.blocks:
x = block(x, mask=padding_mask)
if self.avg_pooler:
x = x.permute(0, 2, 1)
x = self.avg_pooler(x)
x = x.permute(0, 2, 1)
x = self.ln_post(x)
x = self.proj(x)
if self.audio_bos_eos_token is not None:
bos = self.audio_bos_eos_token.weight[0][None, :]
eos = self.audio_bos_eos_token.weight[1][None, :]
else:
bos, eos = None, None
return x, bos, eos
def encode(self, input_audios: Tensor, input_audio_lengths: Tensor, audio_span_tokens: List):
real_input_audio_lens = input_audio_lengths[:, 0].tolist()
max_len_in_batch = max(real_input_audio_lens)
padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to(dtype=self.conv1.weight.dtype,
device=self.conv1.weight.device)
for index in range(len(input_audios)):
padding_mask[index, :input_audio_lengths[index][0].item()] = 0
x, bos, eos = self(input_audios, padding_mask,input_audio_lengths)
output_audios = []
for i in range(len(audio_span_tokens)):
audio_span = audio_span_tokens[i]
audio = x[i][:audio_span-2]
if bos is not None:
audio = torch.concat([bos, audio, eos])
assert len(audio) == audio_span
output_audios.append(audio)
return output_audios