|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from pathlib import Path |
|
import cv2 |
|
from PIL import Image, ImageOps |
|
import accelerate |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from PIL import Image |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
DDPMScheduler, |
|
StableDiffusionControlNetPipeline, |
|
UNet2DConditionModel, |
|
UniPCMultistepScheduler, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.20.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows * cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new("RGB", size=(cols * w, rows * h)) |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i % cols * w, i // cols * h)) |
|
return grid |
|
|
|
|
|
def log_validation(vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step): |
|
logger.info("Running validation... ") |
|
|
|
controlnet = accelerator.unwrap_model(controlnet) |
|
|
|
pipeline = StableDiffusionControlNetPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
revision=args.revision, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
if args.seed is None: |
|
generator = None |
|
else: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
if len(args.validation_image) == len(args.validation_prompt): |
|
validation_images = args.validation_image |
|
validation_inpainting_images = args.validation_inpainting_image |
|
validation_prompts = args.validation_prompt |
|
elif len(args.validation_image) == 1: |
|
validation_images = args.validation_image * len(args.validation_prompt) |
|
validation_inpainting_images = args.validation_inpainting_image * len(args.validation_prompt) |
|
validation_prompts = args.validation_prompt |
|
elif len(args.validation_prompt) == 1: |
|
validation_images = args.validation_image |
|
validation_inpainting_images = args.validation_inpainting_image |
|
validation_prompts = args.validation_prompt * len(args.validation_image) |
|
else: |
|
raise ValueError( |
|
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" |
|
) |
|
|
|
image_logs = [] |
|
|
|
for validation_prompt, validation_image, validation_inpainting_image in zip(validation_prompts, validation_images, validation_inpainting_images): |
|
mask = Image.open(validation_image) |
|
mask = resize_with_padding(mask, (512,512)) |
|
|
|
inpainting_image = Image.open(validation_inpainting_image).convert("RGB") |
|
inpainting_image = resize_with_padding(inpainting_image, (512,512)) |
|
|
|
validation_image = Image.composite(inpainting_image, mask, mask.convert('L')).convert('RGB') |
|
images = [] |
|
for _ in range(args.num_validation_images): |
|
with torch.autocast("cuda"): |
|
image = pipeline( |
|
validation_prompt, validation_image, num_inference_steps=20, generator=generator |
|
).images[0] |
|
images.append(image) |
|
|
|
image_logs.append( |
|
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} |
|
) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images = [] |
|
|
|
formatted_images.append(np.asarray(validation_image)) |
|
|
|
for image in images: |
|
formatted_images.append(np.asarray(image)) |
|
formatted_images = np.stack(formatted_images) |
|
|
|
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") |
|
elif tracker.name == "wandb": |
|
formatted_images = [] |
|
|
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) |
|
|
|
for image in images: |
|
image = wandb.Image(image, caption=validation_prompt) |
|
formatted_images.append(image) |
|
|
|
tracker.log({"validation": formatted_images}) |
|
else: |
|
logger.warn(f"image logging not implemented for {tracker.name}") |
|
|
|
return image_logs |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=revision, |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation |
|
|
|
return RobertaSeriesModelWithTransformation |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): |
|
img_str = "" |
|
if image_logs is not None: |
|
img_str = "You can find some example images below.\n" |
|
for i, log in enumerate(image_logs): |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
validation_image.save(os.path.join(repo_folder, "image_control.png")) |
|
img_str += f"prompt: {validation_prompt}\n" |
|
images = [validation_image] + images |
|
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) |
|
img_str += f"![images_{i})](./images_{i}.png)\n" |
|
|
|
yaml = f""" |
|
--- |
|
license: creativeml-openrail-m |
|
base_model: {base_model} |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
inference: true |
|
--- |
|
""" |
|
model_card = f""" |
|
# controlnet-{repo_id} |
|
|
|
These are controlnet weights trained on {base_model} with new type of conditioning. |
|
{img_str} |
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--controlnet_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained controlnet model or model identifier from huggingface.co/models." |
|
" If not specified controlnet weights are initialized from unet.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help=( |
|
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" |
|
" float32 precision." |
|
), |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="controlnet-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " |
|
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." |
|
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." |
|
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" |
|
"instructions." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--set_grads_to_none", |
|
action="store_true", |
|
help=( |
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing the target image." |
|
) |
|
parser.add_argument( |
|
"--conditioning_image_column", |
|
type=str, |
|
default="conditioning_image", |
|
help="The column of the dataset containing the controlnet conditioning image.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--proportion_empty_prompts", |
|
type=float, |
|
default=0, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." |
|
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" |
|
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_image", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" |
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" |
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" |
|
" `--validation_image` that will be used with all `--validation_prompt`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_inpainting_image", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" |
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" |
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" |
|
" `--validation_image` that will be used with all `--validation_prompt`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run validation every X steps. Validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`" |
|
" and logging the images." |
|
), |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="train_controlnet", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("Specify either `--dataset_name` or `--train_data_dir`") |
|
|
|
if args.dataset_name is not None and args.train_data_dir is not None: |
|
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") |
|
|
|
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: |
|
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") |
|
|
|
if args.validation_prompt is not None and args.validation_image is None: |
|
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") |
|
|
|
if args.validation_prompt is None and args.validation_image is not None: |
|
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") |
|
|
|
if ( |
|
args.validation_image is not None |
|
and args.validation_prompt is not None |
|
and len(args.validation_image) != 1 |
|
and len(args.validation_prompt) != 1 |
|
and len(args.validation_image) != len(args.validation_prompt) |
|
): |
|
raise ValueError( |
|
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`," |
|
" or the same number of `--validation_prompt`s and `--validation_image`s" |
|
) |
|
|
|
if args.resolution % 8 != 0: |
|
raise ValueError( |
|
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." |
|
) |
|
|
|
return args |
|
|
|
|
|
def make_train_dataset(args, tokenizer, accelerator): |
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None: |
|
|
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
) |
|
else: |
|
if args.train_data_dir is not None: |
|
dataset = load_dataset( |
|
args.train_data_dir, |
|
cache_dir=args.cache_dir, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
column_names = dataset["train"].column_names |
|
|
|
|
|
if args.image_column is None: |
|
image_column = column_names[0] |
|
logger.info(f"image column defaulting to {image_column}") |
|
else: |
|
image_column = args.image_column |
|
if image_column not in column_names: |
|
raise ValueError( |
|
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
if args.caption_column is None: |
|
caption_column = column_names[1] |
|
logger.info(f"caption column defaulting to {caption_column}") |
|
else: |
|
caption_column = args.caption_column |
|
if caption_column not in column_names: |
|
raise ValueError( |
|
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
if args.conditioning_image_column is None: |
|
conditioning_image_column = column_names[2] |
|
logger.info(f"conditioning image column defaulting to {conditioning_image_column}") |
|
else: |
|
conditioning_image_column = args.conditioning_image_column |
|
if conditioning_image_column not in column_names: |
|
raise ValueError( |
|
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
def tokenize_captions(examples, is_train=True): |
|
captions = [] |
|
for caption in examples[caption_column]: |
|
if random.random() < args.proportion_empty_prompts: |
|
captions.append("") |
|
elif isinstance(caption, str): |
|
captions.append(caption) |
|
elif isinstance(caption, (list, np.ndarray)): |
|
|
|
captions.append(random.choice(caption) if is_train else caption[0]) |
|
else: |
|
raise ValueError( |
|
f"Caption column `{caption_column}` should contain either strings or lists of strings." |
|
) |
|
inputs = tokenizer( |
|
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" |
|
) |
|
return inputs.input_ids |
|
|
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
conditioning_image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
|
|
def preprocess_train(examples): |
|
examples["pixel_values"] = examples[image_column] |
|
examples["conditioning_pixel_values"] = examples[conditioning_image_column] |
|
examples["input_ids"] = tokenize_captions(examples) |
|
|
|
return examples |
|
|
|
with accelerator.main_process_first(): |
|
if args.max_train_samples is not None: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
|
|
train_dataset = dataset["train"].with_transform(preprocess_train) |
|
|
|
return train_dataset |
|
|
|
|
|
def resize_with_padding(img, expected_size): |
|
img.thumbnail((expected_size[0], expected_size[1])) |
|
|
|
delta_width = expected_size[0] - img.size[0] |
|
delta_height = expected_size[1] - img.size[1] |
|
pad_width = delta_width // 2 |
|
pad_height = delta_height // 2 |
|
padding = (pad_width, pad_height, delta_width - pad_width, delta_height - pad_height) |
|
return ImageOps.expand(img, padding) |
|
|
|
def prepare_mask_and_masked_image(image, mask): |
|
image = np.array(image.convert("RGB")) |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
mask = np.array(mask.convert("L")) |
|
mask = mask.astype(np.float32) / 255.0 |
|
mask = mask[None, None] |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
|
|
|
|
masked_image = image * (mask < 0.5) |
|
|
|
return mask, masked_image |
|
|
|
def collate_fn(examples): |
|
pixel_values = [example["pixel_values"].convert("RGB") for example in examples] |
|
conditioning_images = [example["conditioning_pixel_values"].convert("RGB") for example in examples] |
|
masks = [] |
|
masked_images = [] |
|
|
|
|
|
for i in range(len(pixel_values)): |
|
image = np.array(pixel_values[i]) |
|
mask = np.array(conditioning_images[i]) |
|
dim_min_ind = np.argmin(image.shape[0:2]) |
|
dim = [0, 0] |
|
|
|
resize_len = 768.0 |
|
ratio = resize_len / image.shape[0:2][dim_min_ind] |
|
dim[1-dim_min_ind] = int(resize_len) |
|
dim[dim_min_ind] = int(ratio * image.shape[0:2][1-dim_min_ind]) |
|
dim = tuple(dim) |
|
|
|
|
|
image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA) |
|
mask = cv2.resize(mask, dim, interpolation = cv2.INTER_AREA) |
|
max_x = image.shape[1] - 512 |
|
max_y = image.shape[0] - 512 |
|
x = np.random.randint(0, max_x) |
|
y = np.random.randint(0, max_y) |
|
image = image[y: y + 512, x: x + 512] |
|
mask = mask[y: y + 512, x: x + 512] |
|
|
|
|
|
r = np.copy(image[:,:,0]) |
|
image[:,:,0] = image[:,:,2] |
|
image[:,:,2] = r |
|
image = Image.fromarray(image) |
|
b, g, r = image.split() |
|
image = Image.merge("RGB", (r, g, b)) |
|
pixel_values[i] = image |
|
conditioning_images[i] = Image.composite(image, Image.fromarray(mask), Image.fromarray(mask).convert('L')).convert('RGB') |
|
|
|
|
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
conditioning_image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]) |
|
] |
|
) |
|
|
|
pixel_values = [image_transforms(image) for image in pixel_values] |
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] |
|
conditioning_pixel_values = torch.stack(conditioning_images) |
|
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = torch.stack([example["input_ids"] for example in examples]) |
|
|
|
|
|
|
|
|
|
return { |
|
"pixel_values": pixel_values, |
|
"conditioning_pixel_values": conditioning_pixel_values, |
|
"input_ids": input_ids, |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(args): |
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder = text_encoder_cls.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision |
|
) |
|
|
|
if args.controlnet_model_name_or_path: |
|
logger.info("Loading existing controlnet weights") |
|
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path) |
|
else: |
|
logger.info("Initializing controlnet weights from unet") |
|
controlnet = ControlNetModel.from_unet(unet) |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
i = len(weights) - 1 |
|
|
|
while len(weights) > 0: |
|
weights.pop() |
|
model = models[i] |
|
|
|
sub_dir = "controlnet" |
|
model.save_pretrained(os.path.join(output_dir, sub_dir)) |
|
|
|
i -= 1 |
|
|
|
def load_model_hook(models, input_dir): |
|
while len(models) > 0: |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
vae.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
controlnet.train() |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warn( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
controlnet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
controlnet.enable_gradient_checkpointing() |
|
|
|
|
|
low_precision_error_string = ( |
|
" Please make sure to always have all model weights in full float32 precision when starting training - even if" |
|
" doing mixed precision training, copy of the weights should still be float32." |
|
) |
|
|
|
if accelerator.unwrap_model(controlnet).dtype != torch.float32: |
|
raise ValueError( |
|
f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}" |
|
) |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
params_to_optimize = controlnet.parameters() |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
train_dataset = make_train_dataset(args, tokenizer, accelerator) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
controlnet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
|
|
|
|
tracker_config.pop("validation_prompt") |
|
tracker_config.pop("validation_image") |
|
tracker_config.pop("validation_inpainting_image") |
|
|
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
image_logs = None |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(controlnet): |
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype) |
|
|
|
down_block_res_samples, mid_block_res_sample = controlnet( |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states=encoder_hidden_states, |
|
controlnet_cond=controlnet_image, |
|
return_dict=False, |
|
) |
|
|
|
|
|
model_pred = unet( |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states=encoder_hidden_states, |
|
down_block_additional_residuals=[ |
|
sample.to(dtype=weight_dtype) for sample in down_block_res_samples |
|
], |
|
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), |
|
).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = controlnet.parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if args.validation_prompt is not None and global_step % args.validation_steps == 0: |
|
image_logs = log_validation( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
controlnet, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
global_step, |
|
) |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
controlnet = accelerator.unwrap_model(controlnet) |
|
controlnet.save_pretrained(args.output_dir) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
image_logs=image_logs, |
|
base_model=args.pretrained_model_name_or_path, |
|
repo_folder=args.output_dir, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|