--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-1.7B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer model-index: - name: HuggingFaceTB/SmolLM2-1.7B results: [] --- # HuggingFaceTB/SmolLM2-1.7B This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3348 | 0.0551 | 200 | 1.2704 | | 1.0411 | 0.1101 | 400 | 1.0435 | | 1.0483 | 0.1652 | 600 | 0.9694 | | 0.8801 | 0.2202 | 800 | 0.9227 | | 0.8996 | 0.2753 | 1000 | 0.8888 | | 0.8682 | 0.3303 | 1200 | 0.8648 | | 0.8757 | 0.3854 | 1400 | 0.8468 | | 0.8441 | 0.4404 | 1600 | 0.8311 | | 0.8197 | 0.4955 | 1800 | 0.8206 | | 0.7807 | 0.5505 | 2000 | 0.8090 | | 0.7757 | 0.6056 | 2200 | 0.8015 | | 0.7818 | 0.6607 | 2400 | 0.7957 | | 0.8235 | 0.7157 | 2600 | 0.7915 | | 0.7854 | 0.7708 | 2800 | 0.7883 | | 0.7958 | 0.8258 | 3000 | 0.7863 | | 0.8192 | 0.8809 | 3200 | 0.7829 | | 0.765 | 0.9359 | 3400 | 0.7824 | | 0.7939 | 0.9910 | 3600 | 0.7824 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.21.0