File size: 3,139 Bytes
2fb9126 d29f566 2fb9126 d29f566 20216cb e7f5e36 d29f566 7185bea d29f566 4ee652c d29f566 4ee652c d29f566 4ee652c d29f566 4ee652c d29f566 4ee652c d29f566 4ee652c d29f566 be908e3 d29f566 be908e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
language:
- en
- he
library_name: transformers
---
# Hebrew-Gemma-11B
### Base Models:
- **07.03.2024:** [Hebrew-Gemma-11B](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B)
- **16.03.2024:** [Hebrew-Gemma-11B-V2](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-V2)
### Instruct Models:
- **07.03.2024:** [Hebrew-Gemma-11B-Instruct](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-Instruct)
Hebrew-Gemma-11B is an open-source Large Language Model (LLM) is a hebrew/english pretrained generative text model with 11 billion parameters, based on the Gemma-7B architecture from Google.
It is continued pretrain of gemma-7b, extended to a larger scale and trained on 3B additional tokens of both English and Hebrew text data.
The resulting model Gemma-11B is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation.
### Terms of Use
As an extention of Gemma-7B, this model is subject to the original license and terms of use by Google.
**Gemma-7B original Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
### Usage
Below are some code snippets on how to get quickly started with running the model.
First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
### Running on CPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
### Running on GPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", device_map="auto")
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
### Running with 4-Bit precision
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0])
```
### Benchmark Results
- Coming Soon!
### Notice
Hebrew-Gemma-11B is a pretrained base model and therefore does not have any moderation mechanisms.
### Authors
- Trained by Yam Peleg.
- In collaboration with Jonathan Rouach and Arjeo, inc. |