File size: 3,139 Bytes
2fb9126
 
 
 
d29f566
 
 
 
2fb9126
d29f566
 
20216cb
 
 
 
 
 
e7f5e36
d29f566
 
 
 
 
 
 
 
 
 
 
7185bea
d29f566
 
 
 
 
 
 
 
 
4ee652c
d29f566
 
4ee652c
 
d29f566
 
 
 
 
 
 
 
 
 
4ee652c
d29f566
 
4ee652c
 
d29f566
 
 
 
 
 
 
 
 
 
4ee652c
d29f566
 
4ee652c
 
d29f566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be908e3
d29f566
be908e3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
language:
- en
- he
library_name: transformers
---
# Hebrew-Gemma-11B

### Base Models:
- **07.03.2024:** [Hebrew-Gemma-11B](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B)
- **16.03.2024:** [Hebrew-Gemma-11B-V2](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-V2)

### Instruct Models:
- **07.03.2024:** [Hebrew-Gemma-11B-Instruct](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-Instruct)

Hebrew-Gemma-11B is an open-source Large Language Model (LLM) is a hebrew/english pretrained generative text model with 11 billion parameters, based on the Gemma-7B architecture from Google.

It is continued pretrain of gemma-7b, extended to a larger scale and trained on 3B additional tokens of both English and Hebrew text data.

The resulting model Gemma-11B is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation.


### Terms of Use

As an extention of Gemma-7B, this model is subject to the original license and terms of use by Google.

**Gemma-7B original Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)

### Usage

Below are some code snippets on how to get quickly started with running the model.

First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.

### Running on CPU

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B")

input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

### Running on GPU

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", device_map="auto")

input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

### Running with 4-Bit precision

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))

input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0])
```

### Benchmark Results

- Coming Soon!


### Notice

Hebrew-Gemma-11B is a pretrained base model and therefore does not have any moderation mechanisms.


### Authors

- Trained by Yam Peleg.
- In collaboration with Jonathan Rouach and Arjeo, inc.