ppo-LunarLander-v2 / config.json
yaohuacn's picture
Upload PPO LunarLander-v2 trained agent
ea528b2
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000143CB7004C0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000143CB700550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000143CB7005E0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000143CB700670>", "_build": "<function ActorCriticPolicy._build at 0x00000143CB700700>", "forward": "<function ActorCriticPolicy.forward at 0x00000143CB700790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x00000143CB700820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000143CB7008B0>", "_predict": "<function ActorCriticPolicy._predict at 0x00000143CB700940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000143CB7009D0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000143CB700A60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000143CB700AF0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x00000143CB6661C0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691307722156402600, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGajzjzs0cy7wkOQO8sskTxYPyG96CV1PQAAgD8AAIA/ALVOPVzTR7qrOtK6ZN86OanqQbtVwTE5AACAPwAAgD9NyhK+ONG+uxX6aboOXzG4ObgbPf1GmDkAAIA/AAAAAM1KSb0UcIu6G+/kPK0wArrA6qW5p7QcuQAAgD8AAIA/GqR3vQw+AD/jK9c9HO5mvuNYRD22jkI7AAAAAAAAAABzGNs9jvaKP2shCD51m6S+7ftbPSm5jzwAAAAAAAAAAKba270h8cK8MekpvMQmaD1rKdS8u/LpvAAAgD8AAAAA7ZIuvh8lUD57HBI+idURvhBYBT2qakC7AAAAAAAAAAAAT5c8ISFiPtt3H76OXie+FyJuvaR/J70AAAAAAAAAAACND71C2Rw+xvT0PczwK74+Rc09qsPaPAAAAAAAAAAATQRgPZ97jLvaCzO99J0ePeYrubweEwM+AACAPwAAgD+z+p29BWPju4nSQjxQToE8rg85PYPTWr0AAIA/AACAP1rKvD0p0GS6MPJaskfArrFcEiO6ZanwMgAAAAAAAIA/GujUPTswmz9KIIo+FuOsvhl+yj2gJKc9AAAAAAAAAAAzVyG87DXJu9/NnLrHxJU8RTs2vX58fD0AAIA/AACAP00Ttz2ftue7bWiUPNbElDx2Hkg9Lrt5vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+k2CmMwUSMAWyUTTIBjAF0lEdAkHjgvYe1bHV9lChoBkdAbR91kDp1R2gHTZkBaAhHQJB5k6p5u651fZQoaAZHQGKP8Pe54GFoB03oA2gIR0CQeav/BFd+dX2UKGgGR0BssiGYa5wwaAdNYwFoCEdAkHpO5J9RaXV9lChoBkdAcjbN0vGp/GgHTYwBaAhHQJB6V6mfoRt1fZQoaAZHQG8yOGsV+JBoB01cAWgIR0CQfC9KmKqGdX2UKGgGR0ByI3o+wC8waAdNcwFoCEdAkHxS0OVgQnV9lChoBkdAaw2hRqGlAWgHTUIBaAhHQJB8ev4dp7F1fZQoaAZHQGwmlsHjZL9oB004AWgIR0CQfRz9jwx4dX2UKGgGR0Brfm+ZgG8maAdNPAFoCEdAkI6G3WnTAnV9lChoBkdAcazzKs+3Y2gHTXEBaAhHQJCOx47ihnJ1fZQoaAZHQHETYdU83ddoB01PAWgIR0CQjs9C/oJRdX2UKGgGR0BwiIiQkonbaAdNXAFoCEdAkI8DbrTpgXV9lChoBkdAauMZZSvTw2gHTTcBaAhHQJCPZqi48U51fZQoaAZHQHARbsOXmeVoB01JAWgIR0CQksVEuxr0dX2UKGgGR0Bu3xUtI066aAdNWwFoCEdAkJLhhlUZN3V9lChoBkdAcTcCAc1fmmgHTVcBaAhHQJCS+Q3gk1N1fZQoaAZHQHD1I5tFa0RoB01DAWgIR0CQkzWuoxYadX2UKGgGR0BvkTuF6AvtaAdNRgFoCEdAkJPmxdIGyHV9lChoBkdAcQhx/ustCmgHTU0BaAhHQJCUI0hvBJt1fZQoaAZHQG1jTZYgaFVoB00yAWgIR0CQlSX531SPdX2UKGgGR0BumKYVqN6xaAdNUQFoCEdAkJZFXeWOZXV9lChoBkdAbIFECvHLimgHTVMBaAhHQJCWd6Rhc7h1fZQoaAZHQHCGmIsRQJpoB03JAWgIR0CQl1SMtK7JdX2UKGgGR0ByEvdweeWfaAdNbQFoCEdAkJf1jI7vHHV9lChoBkdAbNLQfp2U0WgHTWABaAhHQJCY8VWS2Yx1fZQoaAZHQHBEG0mdAgRoB01iAWgIR0CQmVj4HoovdX2UKGgGR0BveKjrRjSYaAdNeQFoCEdAkJlcDr7fpHV9lChoBkdAcKAp22XsxGgHTWgBaAhHQJCZ+Mn7YTV1fZQoaAZHQG7FV5rxiG5oB02WAWgIR0CQmnAu7HyVdX2UKGgGR0BxtfijtXxOaAdNIgFoCEdAkJuOSB9TgnV9lChoBkdAP3MPWhAWzmgHTQ8BaAhHQJCcOFCb+cZ1fZQoaAZHQG19NeUpuuRoB01PAWgIR0CQnOdIGyHEdX2UKGgGR0Bw83gWJrLyaAdNNAFoCEdAkJ0ShrWRR3V9lChoBkdAbloYrrgO0GgHTVEBaAhHQJCdOBJ7LMd1fZQoaAZHQHBbiDqW1MNoB01gAWgIR0CQn6IxxkupdX2UKGgGR0Bu7aUu+RHPaAdNUgFoCEdAkKB265Gz8nV9lChoBkdAb/T9oexOcmgHTUkBaAhHQJChTcsUZel1fZQoaAZHQHFELsSkCV9oB01vAWgIR0CQoZeT3Zf2dX2UKGgGR0Bwtzu4PPLQaAdNFgFoCEdAkKJXRLK3eHV9lChoBkdAcADaa1Cw8mgHTWMBaAhHQJCitzq8lHB1fZQoaAZHQHBggf2bobJoB01QAWgIR0CQoved07r+dX2UKGgGR0BwVZLDhtLtaAdNVAFoCEdAkKNz50r9VHV9lChoBkdAcAuR9gF5fWgHTVYBaAhHQJCjh2JSBLB1fZQoaAZHQHCHfkRzzVdoB01aAWgIR0CQpMJMxoIwdX2UKGgGR0BxbYQWepXIaAdNSQFoCEdAkKVlGsmv4nV9lChoBkfAJub+Lm6oVGgHTRwBaAhHQJClu9tdiUh1fZQoaAZHQHEabgbZOBVoB00uAWgIR0CQpfbtqpLmdX2UKGgGR0BvI3rOZ9eAaAdNPAFoCEdAkKaNjG1hLHV9lChoBkdAb+KypJf6XWgHTW8BaAhHQJCnGhew9q11fZQoaAZHQG/dIHs1KoRoB005AWgIR0CQqoVRk3CLdX2UKGgGR0BxLtJ7LMcIaAdNdQFoCEdAkKr5PykKu3V9lChoBkdAby3juKGcnWgHTWEBaAhHQJCrAF8ohIR1fZQoaAZHQHB2IpUgjhVoB01SAWgIR0CQq5Y8+zMSdX2UKGgGR0BxRxy/9Hc2aAdNSQFoCEdAkLysMuvll3V9lChoBkdAbjdLvkRzzWgHTTEBaAhHQJC9DUTcqON1fZQoaAZHQHHchBRhttRoB01EAWgIR0CQvRf2K2rodX2UKGgGR0Btup4fOlfraAdNTwFoCEdAkL0qdMCcPXV9lChoBkdAcNGomois4mgHTWUBaAhHQJC+VScbzbx1fZQoaAZHQGwwPgNwzchoB007AWgIR0CQvmksz2vjdX2UKGgGR0BwJhTaTOgQaAdNPgFoCEdAkL7/thNM5HV9lChoBkdAcZeMvh60IGgHTVIBaAhHQJC/2Q5myxB1fZQoaAZHQG5FpVjqfOFoB003AWgIR0CQwCkrwvxpdX2UKGgGR0BbR5Fb3XZoaAdN6ANoCEdAkMBEaESM+HV9lChoBkdAcOpmixmkFmgHTVQBaAhHQJDAVS3solV1fZQoaAZHQHJMh/d69kBoB012AWgIR0CQwH2gFotddX2UKGgGR0BwK6wjdHlPaAdNNAFoCEdAkMNlmFrVOXV9lChoBkdAbFkiJO32EmgHTTkBaAhHQJDFeFtbcGl1fZQoaAZHQHBqetwJgLJoB01bAWgIR0CQxYrQw9JSdX2UKGgGR0Bw0GYBvJiiaAdNfAFoCEdAkMX7OmixmnV9lChoBkdAcHqbJfYzzmgHTWoBaAhHQJDGnzBhx5t1fZQoaAZHQGvnng5zYEpoB02gAWgIR0CQxsAEMb3odX2UKGgGR0BrRxwuM+/yaAdNaAFoCEdAkMcDPGACn3V9lChoBkdAcBVGT9sJpmgHTWkBaAhHQJDHL1Gsmv51fZQoaAZHQG/9Hbh3qzJoB00/AWgIR0CQx2pVCHARdX2UKGgGR0ByVqnn+yZ8aAdNQQFoCEdAkMg7T6SDAnV9lChoBkdAbANVmz0HyGgHTV0BaAhHQJDIRO1v2oN1fZQoaAZHQHBNvnOjZctoB00pAWgIR0CQyLb6P8yfdX2UKGgGR0Bwp8J/oaDPaAdNNwFoCEdAkMmYWtU4rHV9lChoBkdAb8KGDcuanmgHTUcBaAhHQJDKL1XeWOZ1fZQoaAZHQHE+SkO7QLNoB01SAWgIR0CQyk0z0pVkdX2UKGgGR0BxEr9ETg2qaAdNZwFoCEdAkMqVeSjgynV9lChoBkdAaif5rxiG4GgHTU8BaAhHQJDNNcLSeAd1fZQoaAZHQHHFr7CSA6NoB01AAWgIR0CQztMj/uLKdX2UKGgGR0BwBIfRu0kXaAdNWAFoCEdAkM+5ZW7vonV9lChoBkdAcEGhDPWxyGgHTV0BaAhHQJDQgh0Qsf91fZQoaAZHQGturaVUuL9oB00+AWgIR0CQ0QJ8fFJhdX2UKGgGR0BsmufK6nR+aAdNSAFoCEdAkNEVfVqesnV9lChoBkdAbYNv3JxNqWgHTSABaAhHQJDRHjcVQAN1fZQoaAZHQG10cr7O3UhoB01cAWgIR0CQ0Ut+TeO5dX2UKGgGR0BxnjV/c32maAdNZAFoCEdAkNFttZV4o3V9lChoBkdAbko+tbLU1GgHTTsBaAhHQJDR6NFSbYt1fZQoaAZHQGzDHezlcQloB01uAWgIR0CQ0hLns9jgdX2UKGgGR0Bv2afQKKHgaAdNJAFoCEdAkNKYRRMviHV9lChoBkdAcFyOFxn3+WgHTV8BaAhHQJDTOFEiMYN1fZQoaAZHQG58j8UEgW9oB01MAWgIR0CQ1ChJyyUtdX2UKGgGR0Bx0WZWq95AaAdNQgFoCEdAkNRf1QIldHV9lChoBkdAbH/vVEuxr2gHTV4BaAhHQJDUshkiD/V1fZQoaAZHQG8oWUB4lhRoB01vAWgIR0CQ2Bfe1rqMdX2UKGgGR0BvbnShJyyVaAdNVAFoCEdAkNjL5uZTh3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMU2M6XFVzZXJzXEhGWVxhbmFjb25kYTNcZW52c1xkcmxcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMU2M6XFVzZXJzXEhGWVxhbmFjb25kYTNcZW52c1xkcmxcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0.dev20230609", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}