File size: 2,574 Bytes
934cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b19bb0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
datasets:
- samsum
language:
- en
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
tags:
- summarization
- conversational
- seq2seq
- bart large
widget:
- text: | 
    Hannah: Hey, do you have Betty's number?
    Amanda: Lemme check
    Amanda: Sorry, can't find it.
    Amanda: Ask Larry
    Amanda: He called her last time we were at the park together
    Hannah: I don't know him well
    Amanda: Don't be shy, he's very nice
    Hannah: If you say so..
    Hannah: I'd rather you texted him
    Amanda: Just text him πŸ™‚
    Hannah: Urgh.. Alright
    Hannah: Bye
    Amanda: Bye bye
model-index:
- name: bart-large-xsum-samsum-conversational_summarizer
  results:
  - task: 
      name: Abstractive Text Summarization
      type: abstractive-text-summarization
    dataset:
      name: "SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization" 
      type: samsum
    metrics:
       - name: Validation ROUGE-1
         type: rouge-1
         value: 54.3921
       - name: Validation ROUGE-2
         type: rouge-2
         value: 29.8078
       - name: Validation ROUGE-L
         type: rouge-l
         value: 45.1543
       - name: Test ROUGE-1
         type: rouge-1
         value: 53.3059
       - name: Test ROUGE-2
         type: rouge-2
         value: 28.355
       - name: Test ROUGE-L
         type: rouge-l
         value: 44.0953 
---
## Usage
```python
from transformers import pipeline

summarizer_pipe = pipeline("summarization", model="yashugupta786/bart_large_xsum_samsum_conv_summarizer")
conversation_data = '''Hannah: Hey, do you have Betty's number?
Amanda: Lemme check
Amanda: Sorry, can't find it.
Amanda: Ask Larry
Amanda: He called her last time we were at the park together
Hannah: I don't know him well
Amanda: Don't be shy, he's very nice
Hannah: If you say so..
Hannah: I'd rather you texted him
Amanda: Just text him πŸ™‚
Hannah: Urgh.. Alright
Hannah: Bye
Amanda: Bye bye                                       
'''
summarizer_pipe(conversation_data)
```

## Results
| key | value |
| --- | ----- |
| eval_rouge1 | 54.3921 |
| eval_rouge2 | 29.8078 |
| eval_rougeL | 45.1543 |
| eval_rougeLsum | 49.942 |
| test_rouge1 | 53.3059 |
| test_rouge2 | 28.355 |
| test_rougeL | 44.0953 |
| test_rougeLsum | 48.9246 |

All the metric Rouge1,2,L are computed using precison  and recall then computed the F measure for these 
Rouge recall= no of overlaping words/total no of referenced humman annotated words
Rouge precision= no of overlaping words/total no of candidate machine predicted words