File size: 2,574 Bytes
934cc8b 1b19bb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
datasets:
- samsum
language:
- en
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
tags:
- summarization
- conversational
- seq2seq
- bart large
widget:
- text: |
Hannah: Hey, do you have Betty's number?
Amanda: Lemme check
Amanda: Sorry, can't find it.
Amanda: Ask Larry
Amanda: He called her last time we were at the park together
Hannah: I don't know him well
Amanda: Don't be shy, he's very nice
Hannah: If you say so..
Hannah: I'd rather you texted him
Amanda: Just text him π
Hannah: Urgh.. Alright
Hannah: Bye
Amanda: Bye bye
model-index:
- name: bart-large-xsum-samsum-conversational_summarizer
results:
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: "SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization"
type: samsum
metrics:
- name: Validation ROUGE-1
type: rouge-1
value: 54.3921
- name: Validation ROUGE-2
type: rouge-2
value: 29.8078
- name: Validation ROUGE-L
type: rouge-l
value: 45.1543
- name: Test ROUGE-1
type: rouge-1
value: 53.3059
- name: Test ROUGE-2
type: rouge-2
value: 28.355
- name: Test ROUGE-L
type: rouge-l
value: 44.0953
---
## Usage
```python
from transformers import pipeline
summarizer_pipe = pipeline("summarization", model="yashugupta786/bart_large_xsum_samsum_conv_summarizer")
conversation_data = '''Hannah: Hey, do you have Betty's number?
Amanda: Lemme check
Amanda: Sorry, can't find it.
Amanda: Ask Larry
Amanda: He called her last time we were at the park together
Hannah: I don't know him well
Amanda: Don't be shy, he's very nice
Hannah: If you say so..
Hannah: I'd rather you texted him
Amanda: Just text him π
Hannah: Urgh.. Alright
Hannah: Bye
Amanda: Bye bye
'''
summarizer_pipe(conversation_data)
```
## Results
| key | value |
| --- | ----- |
| eval_rouge1 | 54.3921 |
| eval_rouge2 | 29.8078 |
| eval_rougeL | 45.1543 |
| eval_rougeLsum | 49.942 |
| test_rouge1 | 53.3059 |
| test_rouge2 | 28.355 |
| test_rougeL | 44.0953 |
| test_rougeLsum | 48.9246 |
All the metric Rouge1,2,L are computed using precison and recall then computed the F measure for these
Rouge recall= no of overlaping words/total no of referenced humman annotated words
Rouge precision= no of overlaping words/total no of candidate machine predicted words |