File size: 1,758 Bytes
656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c 656acc6 e984d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
base_model: UBC-NLP/AraT5v2-base-1024
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: araT5-Base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# araT5-Base
This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3080
- Bleu: 19.9507
- Rouge: 0.6204
- Gen Len: 14.3392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|
| 2.7135 | 1.0 | 7500 | 1.6843 | 15.9171 | 0.5533 | 14.33 |
| 1.6024 | 2.0 | 15000 | 1.4055 | 18.3573 | 0.5965 | 14.27 |
| 1.1542 | 3.0 | 22500 | 1.3082 | 19.3343 | 0.6112 | 14.3792 |
| 0.8608 | 4.0 | 30000 | 1.3080 | 19.9507 | 0.6204 | 14.3392 |
| 0.6687 | 5.0 | 37500 | 1.3430 | 20.2683 | 0.6234 | 14.3436 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|