--- license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - bleu - rouge model-index: - name: finetune-NLLB-600M-on-opus100-Ar2En-without-optimization results: [] --- # finetune-NLLB-600M-on-opus100-Ar2En-without-optimization This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2100 - Bleu: 34.6972 - Rouge: 0.6037 - Gen Len: 17.7144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 1.5487 | 1.0 | 2000 | 1.2118 | 34.2974 | 0.6072 | 17.6144 | | 1.135 | 2.0 | 4000 | 1.2100 | 34.6972 | 0.6037 | 17.7144 | | 0.9746 | 3.0 | 6000 | 1.2414 | 34.1024 | 0.5995 | 17.6656 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1