yasmineee commited on
Commit
ee5ad7d
·
verified ·
1 Parent(s): 7528d93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -93
README.md CHANGED
@@ -1,93 +0,0 @@
1
- ---
2
- base_model: UBC-NLP/AraT5v2-base-1024
3
- tags:
4
- - generated_from_trainer
5
- datasets:
6
- - opus100
7
- metrics:
8
- - bleu
9
- model-index:
10
- - name: finetune-t5-base-on-opus100-Ar2En-without-optimization
11
- results:
12
- - task:
13
- name: Sequence-to-sequence Language Modeling
14
- type: text2text-generation
15
- dataset:
16
- name: opus100
17
- type: opus100
18
- config: ar-en
19
- split: train[:7000]
20
- args: ar-en
21
- metrics:
22
- - name: Bleu
23
- type: bleu
24
- value: 10.4288
25
- ---
26
-
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
- # finetune-t5-base-on-opus100-Ar2En-without-optimization
31
-
32
- This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on the opus100 dataset.
33
- It achieves the following results on the evaluation set:
34
- - Loss: 3.0042
35
- - Bleu: 10.4288
36
- - Gen Len: 10.739
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 2e-05
56
- - train_batch_size: 10
57
- - eval_batch_size: 10
58
- - seed: 42
59
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
- - lr_scheduler_type: linear
61
- - num_epochs: 18
62
- - mixed_precision_training: Native AMP
63
-
64
- ### Training results
65
-
66
- | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
67
- |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
68
- | 10.1448 | 1.0 | 210 | 3.9256 | 2.8335 | 9.4988 |
69
- | 4.9822 | 2.0 | 420 | 3.5760 | 4.9001 | 10.3329 |
70
- | 4.42 | 3.0 | 630 | 3.4037 | 5.6973 | 10.301 |
71
- | 4.1414 | 4.0 | 840 | 3.3057 | 6.5224 | 10.5559 |
72
- | 3.9451 | 5.0 | 1050 | 3.2169 | 7.409 | 10.7571 |
73
- | 3.7972 | 6.0 | 1260 | 3.1759 | 8.1445 | 10.5908 |
74
- | 3.6687 | 7.0 | 1470 | 3.1340 | 8.246 | 10.7451 |
75
- | 3.5494 | 8.0 | 1680 | 3.1098 | 8.5656 | 10.7616 |
76
- | 3.4748 | 9.0 | 1890 | 3.0749 | 9.052 | 10.8798 |
77
- | 3.3945 | 10.0 | 2100 | 3.0725 | 9.3223 | 10.6794 |
78
- | 3.314 | 11.0 | 2310 | 3.0511 | 9.67 | 10.6871 |
79
- | 3.2606 | 12.0 | 2520 | 3.0398 | 9.6105 | 10.6531 |
80
- | 3.2314 | 13.0 | 2730 | 3.0211 | 10.0661 | 10.752 |
81
- | 3.1557 | 14.0 | 2940 | 3.0188 | 10.0724 | 10.7188 |
82
- | 3.1571 | 15.0 | 3150 | 3.0148 | 10.3648 | 10.7596 |
83
- | 3.1213 | 16.0 | 3360 | 3.0061 | 10.4008 | 10.7784 |
84
- | 3.1111 | 17.0 | 3570 | 3.0077 | 10.4588 | 10.7155 |
85
- | 3.0851 | 18.0 | 3780 | 3.0042 | 10.4288 | 10.739 |
86
-
87
-
88
- ### Framework versions
89
-
90
- - Transformers 4.35.2
91
- - Pytorch 2.0.0
92
- - Datasets 2.1.0
93
- - Tokenizers 0.15.0