--- language: en tags: - image-classification - ai-detection - vit license: mit --- # AI Image Detector ## Model Description This model is designed to detect whether an image is real or AI-generated. It uses Vision Transformer (ViT) architecture to provide accurate classification. ## Model Usage ```python from transformers import ViTImageProcessor, ViTForImageClassification from PIL import Image import torch # تحميل النموذج والمعالج processor = ViTImageProcessor.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector") model = ViTForImageClassification.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector") def detect_image(image_path): # فتح وتجهيز الصورة image = Image.open(image_path) if image.mode != 'RGB': image = image.convert('RGB') # معالجة الصورة inputs = processor(images=image, return_tensors="pt") # الحصول على التنبؤات with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits.softmax(dim=-1) # تحليل النتائج scores = predictions[0].tolist() results = [ {"label": "REAL", "score": scores[0]}, {"label": "FAKE", "score": scores[1]} ] # ترتيب النتائج حسب درجة الثقة results.sort(key=lambda x: x["score"], reverse=True) return { "prediction": results[0]["label"], "confidence": f"{results[0]['score']*100:.2f}%", "detailed_scores": [ f"{r['label']}: {r['score']*100:.2f}%" for r in results ] } # كود للاختبار if __name__ == "__main__": # يمكنك تغيير مسار الصورة هنا image_path = "path/to/your/image.jpg" try: result = detect_image(image_path) print("\nنتائج تحليل الصورة:") print(f"التصنيف: {result['prediction']}") print(f"درجة الثقة: {result['confidence']}") print("\nالتفاصيل:") for score in result['detailed_scores']: print(f"- {score}") except Exception as e: print(f"حدث خطأ: {str(e)}") ``` ## Classes The model classifies images into two categories: - **Real Image (0)**: The image is real and not AI-generated. - **AI Generated (1)**: The image is generated by AI. ## Technical Details - **Model Architecture**: Vision Transformer (ViT) - **Input**: Images (RGB) - **Output**: Binary classification with confidence score - **Max Image Size**: 224x224 (automatically resized) ## Requirements - `transformers>=4.30.0` - `torch>=2.0.0` - `Pillow>=9.0.0` ## Limitations - Best performance with clear, high-quality images. - May have reduced accuracy with heavily edited photos. - Designed for general image detection. ## Web Integration Example ```javascript async function detectImage(imageFile) { const formData = new FormData(); formData.append('image', imageFile); const response = await fetch('YOUR_API_ENDPOINT', { method: 'POST', body: formData }); return await response.json(); } ``` ## Developer - **Created by**: yaya36095 - **License**: MIT - **Repository**: [https://huggingface.co/yaya36095/ai-image-detector](https://huggingface.co/yaya36095/ai-image-detector)