File size: 1,891 Bytes
d28cc1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-4.0
base_model: NbAiLab/nb-bert-base
tags:
- generated_from_trainer
model-index:
- name: nbbert_NCS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nbbert_NCS

This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4645
- F1-score: 0.7958

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5085        | 1.0   | 504  | 0.4645          | 0.7958   |
| 0.4027        | 2.0   | 1008 | 0.4524          | 0.7897   |
| 0.2655        | 3.0   | 1512 | 0.5993          | 0.7929   |
| 0.1758        | 4.0   | 2016 | 0.8533          | 0.7890   |
| 0.1048        | 5.0   | 2520 | 1.0830          | 0.7757   |
| 0.0536        | 6.0   | 3024 | 1.2138          | 0.7876   |
| 0.0438        | 7.0   | 3528 | 1.3657          | 0.7818   |
| 0.0162        | 8.0   | 4032 | 1.4657          | 0.7843   |
| 0.0151        | 9.0   | 4536 | 1.5118          | 0.7850   |
| 0.0086        | 10.0  | 5040 | 1.5580          | 0.7814   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1