{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1aff95d7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687805499735322656, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2bqzzyNa0/2n2vPUk3pr5XQp08zgkKPQAAAAAAAAAAzTljvcMpG7rlhbozYvthrr2XrDsXV6GzAACAPwAAgD+W+dM+1Bk3P73u8z0ke4G+U6rJPmRSN7wAAAAAAAAAAM3MdzzPvw28nnjwPDsXuTw7G4G9zaKYPQAAgD8AAIA/c6itPRRUlbradqE1hPNRMDmLkLq7x6+0AACAPwAAAACNjCK+obDEPuOTnT0ctHu+FbNnPXbxVTsAAAAAAAAAAA0rkr0W9p8/edIivia+wr44I4S9aouHuwAAAAAAAAAAGtpEvSlMJbqSNVGzdGgzMNbtITs1JM8zAACAPwAAgD+g616+zGnhPkPzHj7vXUm+jSE7vBYMxDwAAAAAAAAAAIAfCr0FRdS7jVTSPHQRbDzorR69sipJPQAAgD8AAIA/5oCHvd/zQz92HdM9hYGvvtCnoTzh4cU9AAAAAAAAAAA6lhW+J+JpP/gyjTzKobu+abyqvRJyCDwAAAAAAAAAAM3YBb1IAZK6zbPzNPMIGq+gzPC6MwxZtAAAgD8AAIA/k3RJvlrDvj4IbDU+ezo4vqNTQrw+6jW9AAAAAAAAAAAaxwM9/b4RP3lumb04D4G+fvnnvOLnFj0AAAAAAAAAAO0stL4yfjA/KjRePrIbtL4AJaa96gbuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBYZ6D5CWyMAWyUTUkBjAF0lEdApN96GrS3LHV9lChoBkdAb2400FbFCWgHTRgBaAhHQKTflBrvb491fZQoaAZHQHJS3tv4ubtoB00/AWgIR0Ck36JGnXNDdX2UKGgGR0BvSoTZg5R1aAdNIQFoCEdApOj1MPBi1HV9lChoBkdAcixuZCv5g2gHTRsBaAhHQKTpDV/c32p1fZQoaAZHQHJ4QUxmCiBoB004AWgIR0Ck6S6fBeoldX2UKGgGR0Bx8luqFRHgaAdNhQFoCEdApOlOXsw+MnV9lChoBkdAbW28Emplz2gHTQYBaAhHQKTpbw2l2vB1fZQoaAZHQHDwmKEWZZ1oB01AAWgIR0Ck6f5ML4N7dX2UKGgGR0Bw+22tuDSPaAdNgQFoCEdApOoBsANoanV9lChoBkdAcGcfIS13MmgHTUUBaAhHQKTq7U3n6mB1fZQoaAZHQHBq15WzWwxoB00kAWgIR0Ck7AQnpjc3dX2UKGgGR0BxyuqU/wAmaAdNFgJoCEdApOyGLUCq63V9lChoBkdAcG8hb4agmWgHTXgBaAhHQKTs07kGRmt1fZQoaAZHQHFtcVtXPqtoB019AWgIR0Ck7Qh4dIXkdX2UKGgGR0BvNMXtShrWaAdNWQFoCEdApO0ls3yZr3V9lChoBkdAcl69aEBbOmgHTWgBaAhHQKTtNoMa0hN1fZQoaAZHQHEs0ona37VoB02EAWgIR0Ck7akR8MNMdX2UKGgGR0BxBQQDmr80aAdNLgFoCEdApO4s74i5eHV9lChoBkdAcY7u2JBPbmgHTUABaAhHQKTuYOjIq9Z1fZQoaAZHQG6XHH3lCC1oB027AWgIR0Ck7oDBuXNUdX2UKGgGR0BtkPKQq7ROaAdNPQFoCEdApO6MfFJg9nV9lChoBkdAbhYNedCmdmgHTRkBaAhHQKTuzvcafjF1fZQoaAZHQHJTLhzeXRhoB008AWgIR0Ck70aFEiMYdX2UKGgGR0BvMnYe1a4daAdNZAFoCEdApO9PZ9NN8HV9lChoBkdAcb1l7tzCDWgHTcsBaAhHQKTxOPikwex1fZQoaAZHQGxCsl9jPOZoB01kAWgIR0Ck8UxyOq//dX2UKGgGR0BwCHcYZVGTaAdNDQFoCEdApPIaGahHsnV9lChoBkdAbMGMkyDZlGgHTTwBaAhHQKTy0+t8uz11fZQoaAZHQHE+2Af+0gNoB01LAWgIR0Ck8tlrdnCgdX2UKGgGR0BuhVZmqYJFaAdNZwFoCEdApPLlq+JxenV9lChoBkdAcA6TjNpudmgHTU8BaAhHQKTzlb+tKZl1fZQoaAZHQHIKEjTrmhdoB00XAWgIR0Ck87+bd8ArdX2UKGgGR0ByO9pPAO8TaAdNbAFoCEdApPQYO4G2TnV9lChoBkdAccInVXmvGWgHTUoBaAhHQKT0LvBrN4Z1fZQoaAZHQHAGzND+irVoB00gAWgIR0Ck9F0mD15CdX2UKGgGR0BQwAAAAAAAaAdL9GgIR0Ck9KvwmVqvdX2UKGgGR0BwLZT3qRlpaAdNUAFoCEdApPVsj7hvSHV9lChoBkdAcFu0/W1+iWgHTUIBaAhHQKT2UMkyDZl1fZQoaAZHQHCGAuVX3g1oB02HAWgIR0Ck9yUf5k9VdX2UKGgGR0Bwcr3Zf2K3aAdNvgFoCEdApPe+9cry2HV9lChoBkdAb2u7fYSQHWgHTSkBaAhHQKT4G1rIo3J1fZQoaAZHQG++O7HyVfNoB01OAWgIR0Ck+O+uV5bAdX2UKGgGR0BuMubwz+FUaAdNQwFoCEdApPllQAMlTnV9lChoBkdAcHFo11nuiWgHTUQBaAhHQKT58Bas6q91fZQoaAZHQHCvhZ6lchVoB01AAWgIR0Ck+n2ZZ0SzdX2UKGgGR0Bxqs9xIatLaAdNZAFoCEdApPqCAjIJaHV9lChoBkdAb8CbG3nZCmgHTS0BaAhHQKT7G4T9KmN1fZQoaAZHQG4Yj+rELploB016AWgIR0ClBAWQXAM2dX2UKGgGR0BuQ5COWBz4aAdNkAFoCEdApQQkjkdWAHV9lChoBkdAbF3RO1v2oWgHTVgBaAhHQKUEnjABT4t1fZQoaAZHQHDY2qHXVb1oB02pAWgIR0ClBQYk/r0KdX2UKGgGR0BxJdGOMl1KaAdNKAFoCEdApQUfb212JXV9lChoBkdAcIkVbiZOSGgHTVEBaAhHQKUFQWN3np11fZQoaAZHQHFng2qDK5loB00kAWgIR0ClBYC6Ymb9dX2UKGgGR0BwbqOzY287aAdNHAFoCEdApQWc63iJf3V9lChoBkdAcW04ffXPJWgHTRoCaAhHQKUF33BYV7B1fZQoaAZHQHDvoxDb8FZoB031AWgIR0ClBmK1gH/tdX2UKGgGR0BxIUFJQLuyaAdNMwFoCEdApQZ37+DODHV9lChoBkdAcd3vG6wt8WgHTRsBaAhHQKUG7tYSxqx1fZQoaAZHQGxflNL127poB01JAWgIR0ClByfgJkXldX2UKGgGR0BuTnG4qgAZaAdNKAFoCEdApQeOu5jH43V9lChoBkdATY9oFmnO0WgHS9NoCEdApQeTCJoCdXV9lChoBkdAch5WrOqvNmgHTTYBaAhHQKUHvyUcGTt1fZQoaAZHQG77H/T9bX9oB001AWgIR0ClCCrwF1SwdX2UKGgGR0BNdC53C9AYaAdLzWgIR0ClCNzN2TxHdX2UKGgGR0BxxUQkHD77aAdNBAFoCEdApQjt9Sde6nV9lChoBkdAcx0VEd/8VGgHTTIBaAhHQKUJTVKf4AV1fZQoaAZHQHDBcPjGT9toB01SAWgIR0ClCVTM7lq8dX2UKGgGR0BxlxOmBOHnaAdNIwFoCEdApQl4r+YMOXV9lChoBkdAcIxJlJ6IFmgHTR4BaAhHQKUJfXdTHbR1fZQoaAZHQERuJ9AooeBoB0vgaAhHQKUJoEmplz51fZQoaAZHQGxlbCaZx71oB01RAWgIR0ClCmDGcWj5dX2UKGgGR0Bu3LfgrH2iaAdNGgFoCEdApQqExh2GI3V9lChoBkdAcFOTfR/mT2gHTWABaAhHQKUKtch1Tzd1fZQoaAZHQHDVC8zyjHpoB00fAWgIR0ClCwvnSv1UdX2UKGgGR0BvXFnkDIRzaAdNIgFoCEdApQv0xsVLz3V9lChoBkdAcJ9jzZpSJmgHTUIBaAhHQKUMT8Yyfth1fZQoaAZHQHGI6AFxGUhoB00LAWgIR0ClDP5N47iidX2UKGgGR0ByxYQd0aIfaAdNTwFoCEdApQ2UYyfthXV9lChoBkdAcOiB+F10T2gHTQkBaAhHQKUNvfYzzmR1fZQoaAZHQHDOuXAuZkVoB02fAWgIR0ClDoynDR+jdX2UKGgGR0BxRz91loUSaAdNKQFoCEdApQ6yPKdQPHV9lChoBkdAbc/7O3UhFGgHTUYBaAhHQKUOvyU9pyp1fZQoaAZHQG2lL4N7SiNoB03EAWgIR0ClDtI9C/oJdX2UKGgGR0Bu/JKUVzp5aAdNSQFoCEdApQ+WOMl1KXV9lChoBkdAc01bADaGpWgHTVoBaAhHQKUP9jebd8B1fZQoaAZHQHFlb1ZkkKNoB00oAWgIR0ClENTAFgUldX2UKGgGR0BvLxm/WUbDaAdNhQFoCEdApRE9rwe/6HV9lChoBkdAcQeD7ZWaMWgHTSoBaAhHQKURdJiAlOZ1fZQoaAZHQHFZ89W6shhoB02mAWgIR0ClE9kgW8AadX2UKGgGR0BvmPOGCZndaAdNMgFoCEdApRPY8jiXIHV9lChoBkdAcgUYChew92gHTQsBaAhHQKUUUv5gw491fZQoaAZHQHKbOoP07KdoB00oAWgIR0ClFIypBHCodX2UKGgGR0A5vXb/Ot4iaAdL7mgIR0ClFKIZydWidX2UKGgGR0BtP6eEqUeNaAdNOQFoCEdApRW/cJtzjnV9lChoBkdAccxdSVGCqmgHTRsBaAhHQKUV6I/qxC91fZQoaAZHQG4QE+otL+RoB00oAWgIR0ClFhCA2AG0dX2UKGgGR0BuP/Z9NN8FaAdNNwFoCEdApRaC4Wk8BHV9lChoBkdAccQ7hegL7WgHTckBaAhHQKUW+BpYcNp1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}