yeniguno commited on
Commit
c382594
1 Parent(s): 446eed8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -4
README.md CHANGED
@@ -11,6 +11,9 @@ metrics:
11
  model-index:
12
  - name: democracy-sentiment-analysis-turkish-roberta
13
  results: []
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -28,16 +31,53 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
 
 
32
 
33
  ## Intended uses & limitations
34
 
35
- More information needed
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
 
41
  ## Training procedure
42
 
43
  ### Training hyperparameters
@@ -67,4 +107,4 @@ The following hyperparameters were used during training:
67
  - Transformers 4.44.2
68
  - Pytorch 2.4.0+cu121
69
  - Datasets 2.21.0
70
- - Tokenizers 0.19.1
 
11
  model-index:
12
  - name: democracy-sentiment-analysis-turkish-roberta
13
  results: []
14
+ license: mit
15
+ language:
16
+ - tr
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  ## Model description
33
 
34
+ This model is fine-tuned from the base model cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual for sentiment analysis in Turkish, specifically focusing on democracy-related text. The model classifies texts into three sentiment categories:
35
+
36
+ Positive
37
+ Neutral
38
+ Negative
39
 
40
  ## Intended uses & limitations
41
 
42
+ This model is well-suited for analyzing sentiments in Turkish texts that discuss democracy, governance, and related political discourse.
43
 
44
  ## Training and evaluation data
45
 
46
+ The training dataset consists of 30,000 rows gathered from various sources, including: Kaggle, Hugging Face, Ekşi Sözlük, and synthetic data generated using state-of-the-art LLMs.
47
+ The dataset is multilingual in origin, with texts in English, Russian, and Turkish. All non-Turkish texts were translated into Turkish. The data represents a broad spectrum of democratic discourse from 30 different sources.
48
+
49
+ ## How to Use
50
+
51
+ To use this model for sentiment analysis, you can leverage the Hugging Face `pipeline` for text classification as shown below:
52
+
53
+ ```python
54
+ from transformers import pipeline
55
+
56
+ # Load the model from Hugging Face
57
+ sentiment_model = pipeline(model="yeniguno/democracy-sentiment-analysis-turkish-roberta", task='text-classification')
58
+
59
+ # Example text input
60
+ response = sentiment_model("En iyisi devletin tüm gücünü tek bir lidere verelim")
61
+
62
+ # Print the result
63
+ print(response)
64
+ # [{'label': 'negative', 'score': 0.9617443084716797}]
65
+
66
+ # Example text input
67
+ response = sentiment_model("Birçok farklı sesin çıkması zaman alıcı ve karmaşık görünebilir, ancak demokrasinin getirdiği özgürlük ve çeşitlilik, toplumun gerçek gücüdür.")
68
+
69
+ # Print the result
70
+ print(response)
71
+ # [{'label': 'positive', 'score': 0.958978533744812}]
72
+
73
+ # Example text input
74
+ response = sentiment_model("Bugün hava yağmurlu.")
75
+
76
+ # Print the result
77
+ print(response)
78
+ # [{'label': 'neutral', 'score': 0.9915837049484253}]
79
 
80
+ ```
81
  ## Training procedure
82
 
83
  ### Training hyperparameters
 
107
  - Transformers 4.44.2
108
  - Pytorch 2.4.0+cu121
109
  - Datasets 2.21.0
110
+ - Tokenizers 0.19.1