yentinglin commited on
Commit
11d7e35
1 Parent(s): 98ae011

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -118
README.md CHANGED
@@ -9,133 +9,85 @@ widget:
9
  library_name: transformers
10
  pipeline_tag: text-generation
11
  ---
12
- # Language Models for Taiwanese Culture
13
 
 
14
 
15
- <p align="center">
16
- ✍️ <a href="https://huggingface.co/spaces/yentinglin/Taiwan-LLaMa2" target="_blank">Online Demo</a>
17
-
18
- 🤗 <a href="https://huggingface.co/yentinglin" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/yentinglin56" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/pdf/2305.13711.pdf" target="_blank">[Paper Coming Soon]</a>
19
- • 👨️ <a href="https://yentingl.com/" target="_blank">Yen-Ting Lin</a>
20
- <br/><br/>
21
- <img src="https://www.csie.ntu.edu.tw/~miulab/taiwan-llama/logo-v2.png" width="100"> <br/>
22
- <a href="https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE">
23
- <img src="https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg"></a>
24
- <a href="https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE">
25
- <img src="https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg"></a>
26
- <br/>
27
-
28
- </p>
29
 
 
 
 
 
 
30
 
31
 
 
32
 
33
- ## Overview
34
- Taiwan-LLaMa is a full parameter fine-tuned model based on LLaMa 2 for Traditional Mandarin applications.
 
35
 
36
- **Taiwan-LLaMa v1.0** pretrained on over 5 billion tokens and instruction-tuned on over 490k conversations both in traditional mandarin.
37
 
38
- ## Demo
39
- A live demonstration of the model can be accessed at [Hugging Face Spaces](https://huggingface.co/spaces/yentinglin/Taiwan-LLaMa2).
40
 
41
- ## Key Features
 
42
 
43
- 1. **Traditional Mandarin Support**: The model is fine-tuned to understand and generate text in Traditional Mandarin, making it suitable for Taiwanese culture and related applications.
44
 
45
- 2. **Instruction-Tuned**: Further fine-tuned on conversational data to offer context-aware and instruction-following responses.
46
 
47
- 3. **Performance on Vicuna Benchmark**: Taiwan-LLaMa's relative performance on Vicuna Benchmark is measured against models like GPT-4 and ChatGPT. It's particularly optimized for Taiwanese culture.
48
 
49
- 4. **Flexible Customization**: Advanced options for controlling the model's behavior like system prompt, temperature, top-p, and top-k are available in the demo.
50
 
 
51
 
52
- ## Work in progress
53
- - [ ] **Improved pretraining**: A refined pretraining process (e.g. more data from Taiwan, training strategies) is under development, aiming to enhance model performance for better Taiwanese culture.
54
- - [ ] **Extend max length**: Utilizing the Rope mechanism as described in [the paper](https://arxiv.org/abs/2104.09864), the model's length will be extended from 4k to 8k.
55
 
 
 
56
 
57
- ## Taiwanese Culture Examples
58
-
59
- | Question | ChatGPT | **Taiwan LLaMa v1.0** | **Taiwan LLaMa v0.0 (w/o pretraining)** | Llama2_Traditional_Chinese_13b_Chat |
60
- |:-|:-|:-|:-|:-|
61
- | 以惡地景觀著名的是高雄哪一個景點? | 以惡地地景著名的是高雄市的旗津。 | 高雄以擁有惡地景觀著名的景點是田寮月世界。✅ | 以惡地景觀著名的是高雄市的旗津島。旗津島是一個小島,... | 高雄市內有多個以惡地景觀著名的景點,其中以下面幾個最為著名: 1. 高雄捷運紅線沿途景點:高雄市政府為了推廣高雄 |
62
- | 唐鳳是誰? | 唐鳳(Audrey Tang)是台灣���政治家、社會活動家和軟體工程師。她於2016年擔任台灣行政院數位政務委員,是台灣政府歷史上首位沒有政黨背景的政務官。唐鳳在軟體工程領域有豐富的經驗。 ✅ | 唐鳳是政治評論家、資訊社會學研究者,也是台灣第一位擔任政府數位政委的人。 ✅ | 唐鳳(Tang Feng)是一位著名的中國演員和歌手。他出生於1974年12月17日,出生地點在中國北京。唐鳳在1995年開始他的演藝生涯,並在同年發行了他的首張專輯《我不孤單》。此後,他發行了許多受歡迎的歌曲,並在多部電視劇和電影中擔任主角。唐鳳因其精湛的演技和迷人的歌聲而被譽為“亞洲魅力男王”。他的音樂獲得了多個獎項,包括“華表最佳新男演唱獎”、“華表最佳歌曲獎”和“華表最佳舞蹈獎”等。 | 唐鳳是唐朝時期的一位著名文學家,他的代表作品包括《陰騭》、《狂凡子》等。他的文學風格具有強烈的個性和創意,被譽為「唐代文學之父」。 |
63
- | NTU 在哪? | NTU位於新加坡,具體地址是50 Nanyang Avenue, Singapore 639798。 | NTU 是國立臺灣大學的縮寫。它是臺灣的一所頂尖研究型大學,位於臺北市。 ✅| NTU 是台灣的一所大學,位於台北市。✅ | NTU 的總部位於台灣新北市板橋區,佔地面積約為1,000公頃。|
64
- | 甚麼是22K? | "22K" 可能指的是金的純度,尤其是在珠寶和金飾方面。 | "22K"是指台灣的大學畢業生的起薪,大約是新台幣22,000元。這個詞被用來形容大學畢業生的起薪偏低,並且在就業市場上對於大學畢業生的需求不足。✅| 22K是指溫度尺度上的22,000K(千度)。1K代表一度,即溫度差距,是攝氏溫標(攝氏度)的一百萬分之一。因此,22K等於-253.15°C(攝氏溫標)或-423.67°F(華氏溫標)。 | 22K是一種簡寫,即22,000。它是一個數字,表示22,000個單位。|
65
- | 肉圓要不要加香菜? | 這是個個人口味的問題,有些人喜歡在肉圓中加入香菜,因為香菜的清香可以增添風味;而有些人則不喜歡香菜的味道,覺得它會蓋過其他食材的味道。所以要不要加香菜,可以根據個人喜好來決定。 | 這是一個個人喜好的問題,有些人喜歡在肉圓裡加香菜,有些人不喜歡。**在台灣**,肉圓加香菜是一種常見的做法,這是一種在肉圓上加香菜的做法。然而,在其他國這是一個文化差異的問題。😊 | 肉圓加香菜可以增添一些芳香和美味的口感,如果你喜歡香菜的味道,可以試試加入肉圓中。香菜通常在製作過程中炒香,可以增添一些芳香和美味的味道。如果你想要加入香菜,可以在製作過程中炒香一些香菜,然後將其混入肉圓中。肉圓加香菜可以增添一些芳香和美味的口感,如果你喜歡香菜的味道,可以試試加入肉圓中。| 加香菜的肉圓味道更好,但是不加香菜的肉圓也很好吃。如果你喜歡香菜的味道,那麼加上香菜就好了。如果你不喜歡香菜,那麼不加也不會影響肉 |
66
-
67
-
68
- ## Model
69
-
70
- We provide a number of model checkpoints that we trained. Please find them on Hugging Face [here](https://huggingface.co/models?search=taiwan-llama). Here are some quick links to the checkpoints that are finetuned from LLaMa 2:
71
-
72
- | **Model** | **13B** |
73
- |--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
74
- | **Taiwan-LLaMa v1.0** (_better for Taiwanese Culture_) | 🤗 <a href="https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0" target="_blank">yentinglin/Taiwan-LLaMa-v1.0</a> |
75
- | Taiwan-LLaMa v0.9 (partial instruction set) | 🤗 <a href="https://huggingface.co/yentinglin/Taiwan-LLaMa-v0.9" target="_blank">yentinglin/Taiwan-LLaMa-v0.9</a> |
76
- | Taiwan-LLaMa v0.0 (no Traditional Mandarin pretraining) | 🤗 <a href="https://huggingface.co/yentinglin/Taiwan-LLaMa-v0.0" target="_blank">yentinglin/Taiwan-LLaMa-v0.0</a> |
77
-
78
- ## Data
79
-
80
- Here are some quick links to the datasets that we used to train the models:
81
-
82
- | **Dataset** | **Link** |
83
- |---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
84
- | **Instruction-tuning** | 🤗 <a href="https://huggingface.co/datasets/yentinglin/traditional_mandarin_instructions" target="_blank">yentinglin/traditional_mandarin_instructions</a> |
85
- | Traditional Mandarin Pretraining | 🤗 <a href="https://huggingface.co/datasets/yentinglin/zh_TW_c4" target="_blank">yentinglin/zh_TW_c4</a> |
86
-
87
-
88
- ## Architecture
89
- Taiwan-LLaMa is based on LLaMa 2, leveraging transformer architecture, <a href="https://github.com/Dao-AILab/flash-attention" target="_blank">flash attention 2</a>, and bfloat16.
90
-
91
- It includes:
92
-
93
- * Pretraining Phase: Pretrained on a vast corpus of over 5 billion tokens, extracted from common crawl in Traditional Mandarin.
94
- * Fine-tuning Phase: Further instruction-tuned on over 490k multi-turn conversational data to enable more instruction-following and context-aware responses.
95
-
96
- ## Generic Capabilities on Vicuna Benchmark
97
-
98
- The data is translated into traditional mandarin for evaluating the general capability.
99
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
- <img src="./images/zhtw_vicuna_bench_chatgptbaseline.png" width="700">
102
 
103
- The scores are calculated with ChatGPT as the baseline, represented as 100%. The other values show the relative performance of different models compared to ChatGPT.
104
 
105
- | Language Model | Relative Score (%) |
106
- |-------------------------------------|--------------------|
107
- | GPT-4 | 102.59% |
108
- | ChatGPT | 100.00% |
109
- | **Taiwan-LLaMa v1.0** | 76.76% |
110
- | Claude-Instant-1.2 | 74.04% |
111
- | Llama2_Traditional_Chinese_13b_Chat | 56.21% |
112
 
113
 
 
114
 
 
 
 
 
 
 
 
115
 
116
- ## How to deploy the model on my own machine?
117
- We recommend hosting models with [🤗 Text Generation Inference](https://github.com/huggingface/text-generation-inference). Please see their [license](https://github.com/huggingface/text-generation-inference/blob/main/LICENSE) for details on usage and limitations.
118
- ```bash
119
- bash run_text_generation_inference.sh "yentinglin/Taiwan-LLaMa" NUM_GPUS DIR_TO_SAVE_MODEL PORT MAX_INPUT_LEN MODEL_MAX_LEN
120
- ```
121
 
122
- Prompt format follows vicuna-v1.1 template:
123
- ```
124
- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {user} ASSISTANT:
125
- ```
126
 
127
- ## Setup development environment
128
- ```bash
129
- conda create -n taiwan-llama python=3.10 -y
130
- conda activate taiwan-llama
131
- pip install -r requirements.txt
132
  ```
133
-
134
-
135
- ## Citations
136
- If you use our code, data, or models in your research, please cite this repository. You can use the following BibTeX entry:
137
-
138
- ```bibtex
139
  @inproceedings{lin-chen-2023-llm,
140
  title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models",
141
  author = "Lin, Yen-Ting and Chen, Yun-Nung",
@@ -150,25 +102,9 @@ If you use our code, data, or models in your research, please cite this reposito
150
 
151
  @misc{taiwanllama,
152
  author={Lin, Yen-Ting and Chen, Yun-Nung},
153
- title={Taiwanese-Aligned Language Models based on Meta-Llama2},
154
  year={2023},
155
- url={https://github.com/adamlin120/Taiwan-LLaMa},
156
- note={Code and models available at https://github.com/adamlin120/Taiwan-LLaMa},
157
  }
158
  ```
159
-
160
- ## Collaborate With Us
161
- If you are interested in contributing to the development of Traditional Mandarin language models, exploring new applications, or leveraging Taiwan-LLaMa for your specific needs, please don't hesitate to contact us. We welcome collaborations from academia, industry, and individual contributors.
162
-
163
- ## License
164
- The code in this project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.
165
-
166
- The models included in this project are licensed under the LLAMA 2 Community License. See the [LLAMA2 License](https://github.com/facebookresearch/llama/blob/main/LICENSE) for full details.
167
-
168
- ## OpenAI Data Acknowledgment
169
- The data included in this project were generated using OpenAI's models and are subject to OpenAI's Terms of Use. Please review [OpenAI's Terms of Use](https://openai.com/policies/terms-of-use) for details on usage and limitations.
170
-
171
-
172
- ## Acknowledgements
173
-
174
- We thank [Meta LLaMA team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) for their open-source efforts in democratizing large language models.
 
9
  library_name: transformers
10
  pipeline_tag: text-generation
11
  ---
12
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
13
 
14
+ # 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
15
 
16
+ # Model Card for Taiwan LLM 13B v0.0 chat
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
19
+ Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
20
+ This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
21
+ It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
22
+ For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
23
 
24
 
25
+ ## Model description
26
 
27
+ - **Model type:** A 13B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
28
+ - **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
29
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
30
 
31
+ ### Model Sources
32
 
33
+ <!-- Provide the basic links for the model. -->
 
34
 
35
+ - **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
36
+ - **Demo:** https://twllm.com/
37
 
38
+ ## Performance
39
 
 
40
 
41
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
42
 
43
+ ## Intended uses
44
 
45
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
46
 
47
+ ```python
48
+ # pip install transformers>=4.34
49
+ # pip install accelerate
50
 
51
+ import torch
52
+ from transformers import pipeline
53
 
54
+ pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLaMa-v0.0", torch_dtype=torch.bfloat16, device_map="auto")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
57
+ messages = [
58
+ {
59
+ "role": "system",
60
+ "content": "你是一個人工智慧助理",
61
+ },
62
+ {"role": "user", "content": "東北季風如何影響台灣氣候?"},
63
+ ]
64
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
65
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
66
+ print(outputs[0]["generated_text"])
67
+ ```
68
 
69
+ ### Training hyperparameters
70
 
71
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
72
 
73
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
 
 
 
 
 
 
74
 
75
 
76
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
77
 
78
+ The following hyperparameters were used during training:
79
+ - learning_rate: 5e-05
80
+ - distributed_type: multi-GPU
81
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
82
+ - lr_scheduler_type: cosine
83
+ - lr_scheduler_warmup_ratio: 0.03
84
+ - num_epochs: 5.0
85
 
86
+ ## Citation
 
 
 
 
87
 
88
+ If you find Taiwan LLM is useful in your work, please cite it with:
 
 
 
89
 
 
 
 
 
 
90
  ```
 
 
 
 
 
 
91
  @inproceedings{lin-chen-2023-llm,
92
  title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models",
93
  author = "Lin, Yen-Ting and Chen, Yun-Nung",
 
102
 
103
  @misc{taiwanllama,
104
  author={Lin, Yen-Ting and Chen, Yun-Nung},
105
+ title={Language Models for Taiwanese Culture},
106
  year={2023},
107
+ url={https://github.com/MiuLab/Taiwan-LLaMa},
108
+ note={Code and models available at https://github.com/MiuLab/Taiwan-LLaMa},
109
  }
110
  ```