from transformers import GPTNeoConfig import os # export DATASET="${HOME}/data/nedd_wiki_news/nedd_wiki_news.py" # Name of the dataset in the Huggingface Hub # export DATASET_CONFIG="nedd_nl" # Config of the dataset in the Huggingface Hub # export DATASET_SPLIT="train" # Split to use for training tokenizer and model # export VOCAB_SIZE="50257" # export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model, e.g. here inside the mount # export CONFIG_TYPE="gpt2-medium" # Config that our model will use config_type = os.environ.get("CONFIG_TYPE") dataset_name = os.environ.get("DATASET") dataset_config = os.environ.get("DATASET_CONFIG") dataset_split = os.environ.get("DATASET_SPLIT") vocab_size = int(os.environ.get("VOCAB_SIZE")) model_path = os.environ.get("MODEL_PATH") config = GPTNeoConfig.from_pretrained(config_type, embed_dropout=0.0, attention_dropout=0.0, vocab_size=vocab_size) config.save_pretrained(model_path)