--- language: nl widget: - text: "In het jaar 2030 zullen we" - text: "Toen ik gisteren volledig in de ban was van" - text: "Studenten en leraren van de Bogazici Universiteit in de Turkse stad Istanbul" - text: "In Israël was een strenge lockdown" tags: - gpt2-large - gpt2 pipeline_tag: text-generation datasets: - yhavinga/mc4_nl_cleaned --- # GPT2-Large pre-trained on cleaned Dutch mC4 🇳🇱 Dataset: * [mC4 NL Cleaned](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned) * dataset config: full (33B tokens) Tokenizer: * Tokenizer trained on mC4 with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling) Training details: * Training started on step 360K (bs 16) ppl 21 of earlier model trained with Adam optimizer. * Training at step 800K of 2M (38%) ppl 15,3[D * Block size: 512 * Optimizer: adafactor * Learning rate: 3.3e-5 * Batch size: 32 * Warmup steps: 5000 * Weight decay: 0.01 Work in progress. Dec 2021-Jan2022 * Many thanks to the [Google TPU Research Cloud](https://sites.research.google/trc/about/) for providing access to a TPU cluster! * Thanks to @gsarti for creating the [t5-flax-gcp repository](https://github.com/gsarti/t5-flax-gcp). * Also thanks to the creators of [gpt2-medium-persian](https://huggingface.co/flax-community/gpt2-medium-persian) and [gpt2-medium-indonesian](https://huggingface.co/flax-community/gpt2-medium-persian) for sharing their training scripts!