File size: 4,974 Bytes
49bca01
 
 
74babbc
 
 
 
49bca01
 
 
 
 
 
 
 
 
50a124d
 
 
 
 
 
 
 
 
 
 
 
 
6b3114b
50a124d
cd84b33
6b3114b
a504b3a
e0dfc71
74babbc
50a124d
e0dfc71
74babbc
e0dfc71
74babbc
e0dfc71
 
 
74babbc
e0dfc71
 
 
 
 
 
 
50a124d
 
 
 
 
 
 
 
f867846
 
50a124d
 
49bca01
e0dfc71
49bca01
e0dfc71
 
50a124d
 
e0dfc71
50a124d
 
e0dfc71
 
50a124d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language: nl
widget:
- text: "In het jaar 2030 zullen we"
- text: "Toen ik gisteren volledig in de ban was van"
- text: "Studenten en leraren van de Bogazici Universiteit in de Turkse stad Istanbul"
- text: "In Israël was een strenge lockdown"
tags:
- gpt2-medium
- gpt2
pipeline_tag: text-generation
datasets:
- yhavinga/mc4_nl_cleaned
---
# GPT2-Medium pre-trained on cleaned Dutch mC4 🇳🇱

A GPT2 medium-sized model (345M parameters) trained from scratch on Dutch, with perplexity 15.1 on cleaned Dutch mC4.

## How To Use

You can use this GPT2-model directly with a pipeline for text generation.

```python
MODEL_DIR='yhavinga/gpt2-medium-dutch'
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_DIR)
model = GPT2LMHeadModel.from_pretrained(MODEL_DIR)
generator = pipeline('text-generation', model, tokenizer=tokenizer, config={'max_length':100})

generated_text = generator('In Antwerpen heeft zich gisteren', max_length=100, do_sample=True, top_k=40, top_p=0.95, repetition_penalty=2.0))
```

*"In Antwerpen heeft zich gisteren" - " een dramatische ontknoping voorgedaan in de Vlaamse deelregering. De VLD, die sinds afgelopen woensdag aan het bewind is in Vlaams-Waals gebied (de zogenaamde gewestelijke en niet rechtstreeks met Vlaanderen samenwerkende gewesten), krijgt toch geen meerderheidszetels bij verkiezingen voor gemeenteraadsverkiezingen in oktober of november volgend jaar in Westmalle, Berchem, Tervuren enz., aldus premier Jean-Pierre Van Cauwenberghe van Wallonië vandaag"*

## Tokenizer

* BPE tokenizer trained from scratch for Dutch on mC4 nl cleaned with scripts from the Huggingface
  Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling).

## Dataset

This model was trained on of the `full` configuration (33B tokens) of
[cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned),
which is the original mC4, except

  * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed
  * Sentences with less than 3 words are removed
  * Sentences with a word of more than 1000 characters are removed
  * Documents with less than 5 sentences are removed
  * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies",
    "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed.
 
## Models

TL;DR: [yhavinga/gpt2-medium-dutch](https://huggingface.co/yhavinga/gpt2-medium-dutch) is the best model.

* The models with `a`/`b` in the step-column have been trained to step `a` of a total of `b` steps.

|                                                                                   | model   | params | train seq len | ppl  | loss | batch size | epochs | steps           | optim     | lr     | duration | config    |
|-----------------------------------------------------------------------------------|---------|--------|---------------|------|------|------------|--------|-----------------|-----------|--------|----------|-----------|
| [yhavinga/gpt-neo-125M-dutch](https://huggingface.co/yhavinga/gpt-neo-125M-dutch) | gpt neo | 125M   | 512           | 20.9 | 3.04 | 128        | 1      | 190000/558608          | adam | 2.4e-3 | 1d 12h   | full |
| [yhavinga/gpt2-medium-dutch](https://huggingface.co/yhavinga/gpt2-medium-dutch)   | gpt2    | 345M   | 512           | 15.1 | 2.71 | 128        | 1      | 320000/520502   | adam | 8e-4   | 7d 2h    | full      |
| [yhavinga/gpt2-large-dutch](https://huggingface.co/yhavinga/gpt2-large-dutch)     | gpt2    | 762M   | 512           | 15.1 | 2.72 | 32         | 1      | 1100000/2082009 | adafactor | 3.3e-5 | 8d 15h   | large     |
| [yhavinga/gpt-neo-1.3B-dutch](https://huggingface.co/yhavinga/gpt-neo-1.3B-dutch) | gpt neo | 1.3B   | 512           | 16.0 | 2.77 | 16         | 1      | 960000/3049896  | adafactor | 5e-4   | 7d 11h   | full      |

## Acknowledgements

This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was also
instrumental in most, if not all, parts of the training. The following repositories where helpful in setting up the TPU-VM,
and training the models:

* [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp)
* [HUggingFace Flax MLM examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling)
* [gpt2-medium-persian](https://huggingface.co/flax-community/gpt2-medium-persian)
* [gpt2-medium-indonesian](https://huggingface.co/flax-community/gpt2-medium-persian)

Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)