Yibin Lei
commited on
Commit
·
7028969
1
Parent(s):
c3024ed
Uploda bidirectional implementation
Browse files- bidirectional_mistral.py +257 -0
bidirectional_mistral.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is adapted from https://github.com/McGill-NLP/llm2vec.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from transformers import (
|
8 |
+
MistralModel,
|
9 |
+
MistralPreTrainedModel,
|
10 |
+
MistralForCausalLM,
|
11 |
+
MistralConfig,
|
12 |
+
)
|
13 |
+
from transformers.models.mistral.modeling_mistral import (
|
14 |
+
MistralDecoderLayer,
|
15 |
+
MistralRMSNorm,
|
16 |
+
MistralAttention,
|
17 |
+
MistralFlashAttention2,
|
18 |
+
MistralSdpaAttention,
|
19 |
+
MistralMLP,
|
20 |
+
)
|
21 |
+
from torch import nn
|
22 |
+
from transformers.utils import logging
|
23 |
+
from transformers.cache_utils import Cache, StaticCache, SlidingWindowCache
|
24 |
+
|
25 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
26 |
+
|
27 |
+
from peft import PeftModel
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
def is_transformers_attn_greater_or_equal_4_43_1():
|
33 |
+
import importlib.metadata
|
34 |
+
from packaging import version
|
35 |
+
from transformers.utils.import_utils import _is_package_available
|
36 |
+
if not _is_package_available("transformers"):
|
37 |
+
return False
|
38 |
+
|
39 |
+
return version.parse(importlib.metadata.version("transformers")) >= version.parse(
|
40 |
+
"4.43.1"
|
41 |
+
)
|
42 |
+
|
43 |
+
class ModifiedMistralAttention(MistralAttention):
|
44 |
+
def __init__(self, *args, **kwargs):
|
45 |
+
super().__init__(*args, **kwargs)
|
46 |
+
self.is_causal = False
|
47 |
+
|
48 |
+
|
49 |
+
class ModifiedMistralFlashAttention2(MistralFlashAttention2):
|
50 |
+
def __init__(self, *args, **kwargs):
|
51 |
+
super().__init__(*args, **kwargs)
|
52 |
+
self.is_causal = False
|
53 |
+
|
54 |
+
|
55 |
+
class ModifiedMistralSdpaAttention(MistralSdpaAttention):
|
56 |
+
def __init__(self, *args, **kwargs):
|
57 |
+
super().__init__(*args, **kwargs)
|
58 |
+
self.is_causal = False
|
59 |
+
|
60 |
+
|
61 |
+
MISTRAL_ATTENTION_CLASSES = {
|
62 |
+
"eager": ModifiedMistralAttention,
|
63 |
+
"flash_attention_2": ModifiedMistralFlashAttention2,
|
64 |
+
"sdpa": ModifiedMistralSdpaAttention,
|
65 |
+
}
|
66 |
+
|
67 |
+
|
68 |
+
class ModifiedMistralDecoderLayer(MistralDecoderLayer):
|
69 |
+
def __init__(self, config: MistralConfig, layer_idx: int):
|
70 |
+
nn.Module.__init__(self)
|
71 |
+
self.hidden_size = config.hidden_size
|
72 |
+
|
73 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](
|
74 |
+
config, layer_idx
|
75 |
+
)
|
76 |
+
|
77 |
+
self.mlp = MistralMLP(config)
|
78 |
+
self.input_layernorm = MistralRMSNorm(
|
79 |
+
config.hidden_size, eps=config.rms_norm_eps
|
80 |
+
)
|
81 |
+
self.post_attention_layernorm = MistralRMSNorm(
|
82 |
+
config.hidden_size, eps=config.rms_norm_eps
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
class MistralBiModel(MistralModel):
|
87 |
+
_no_split_modules = ["ModifiedMistralDecoderLayer"]
|
88 |
+
|
89 |
+
def __init__(self, config: MistralConfig):
|
90 |
+
if not is_transformers_attn_greater_or_equal_4_43_1():
|
91 |
+
raise ValueError(
|
92 |
+
"The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1"
|
93 |
+
)
|
94 |
+
MistralPreTrainedModel.__init__(self, config)
|
95 |
+
self.padding_idx = config.pad_token_id
|
96 |
+
self.vocab_size = config.vocab_size
|
97 |
+
|
98 |
+
self.embed_tokens = nn.Embedding(
|
99 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
100 |
+
)
|
101 |
+
assert config._attn_implementation == "flash_attention_2"
|
102 |
+
self.layers = nn.ModuleList(
|
103 |
+
[
|
104 |
+
ModifiedMistralDecoderLayer(config, layer_idx)
|
105 |
+
for layer_idx in range(config.num_hidden_layers)
|
106 |
+
]
|
107 |
+
)
|
108 |
+
self._attn_implementation = config._attn_implementation
|
109 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
110 |
+
|
111 |
+
self.gradient_checkpointing = False
|
112 |
+
# Initialize weights and apply final processing
|
113 |
+
self.post_init()
|
114 |
+
|
115 |
+
# Copied from forward() in transformers.models.mistral.modeling_mistral.MistralModel
|
116 |
+
def _update_causal_mask(
|
117 |
+
self,
|
118 |
+
attention_mask: torch.Tensor,
|
119 |
+
input_tensor: torch.Tensor,
|
120 |
+
cache_position: torch.Tensor,
|
121 |
+
past_key_values: Cache,
|
122 |
+
use_cache: bool,
|
123 |
+
output_attentions: bool,
|
124 |
+
):
|
125 |
+
if self._attn_implementation == "flash_attention_2":
|
126 |
+
if attention_mask is not None and use_cache:
|
127 |
+
is_padding_right = (
|
128 |
+
attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
129 |
+
)
|
130 |
+
if is_padding_right:
|
131 |
+
raise ValueError(
|
132 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
133 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
134 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
135 |
+
)
|
136 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
137 |
+
return attention_mask
|
138 |
+
return None
|
139 |
+
|
140 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
141 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
142 |
+
# to infer the attention mask.
|
143 |
+
|
144 |
+
# cache_position must be valid here no matter which cache we use
|
145 |
+
past_seen_tokens = cache_position[0] if past_key_values is not None else 0
|
146 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
147 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
148 |
+
|
149 |
+
# if (
|
150 |
+
# self.config._attn_implementation == "sdpa"
|
151 |
+
# and not (using_static_cache or using_sliding_window_cache)
|
152 |
+
# and not output_attentions
|
153 |
+
# ):
|
154 |
+
# if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
155 |
+
# attention_mask,
|
156 |
+
# inputs_embeds=input_tensor,
|
157 |
+
# past_key_values_length=past_seen_tokens,
|
158 |
+
# sliding_window=self.config.sliding_window,
|
159 |
+
# is_training=self.training,
|
160 |
+
# ):
|
161 |
+
# return None
|
162 |
+
|
163 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
164 |
+
min_dtype = torch.finfo(dtype).min
|
165 |
+
sequence_length = input_tensor.shape[1]
|
166 |
+
# SlidingWindowCache
|
167 |
+
if using_sliding_window_cache:
|
168 |
+
target_length = max(sequence_length, self.config.sliding_window)
|
169 |
+
# StaticCache
|
170 |
+
elif using_static_cache:
|
171 |
+
target_length = past_key_values.get_max_length()
|
172 |
+
# DynamicCache or no cache
|
173 |
+
else:
|
174 |
+
target_length = (
|
175 |
+
attention_mask.shape[-1]
|
176 |
+
if isinstance(attention_mask, torch.Tensor)
|
177 |
+
else past_seen_tokens + sequence_length + 1
|
178 |
+
)
|
179 |
+
|
180 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
181 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
182 |
+
if attention_mask.max() != 0:
|
183 |
+
raise ValueError(
|
184 |
+
"Custom 4D attention mask should be passed in inverted form with max==0`"
|
185 |
+
)
|
186 |
+
causal_mask = attention_mask
|
187 |
+
else:
|
188 |
+
causal_mask = torch.zeros(
|
189 |
+
(sequence_length, target_length), dtype=dtype, device=device
|
190 |
+
) # causal_mask = torch.full(
|
191 |
+
# (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
192 |
+
# )
|
193 |
+
exclude_mask = torch.arange(
|
194 |
+
target_length, device=device
|
195 |
+
) > cache_position.reshape(-1, 1)
|
196 |
+
if self.config.sliding_window is not None:
|
197 |
+
if (
|
198 |
+
not using_sliding_window_cache
|
199 |
+
or sequence_length > self.config.sliding_window
|
200 |
+
):
|
201 |
+
exclude_mask.bitwise_or_(
|
202 |
+
torch.arange(target_length, device=device)
|
203 |
+
<= (cache_position.reshape(-1, 1) - self.config.sliding_window)
|
204 |
+
)
|
205 |
+
causal_mask *= exclude_mask
|
206 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
207 |
+
input_tensor.shape[0], 1, -1, -1
|
208 |
+
)
|
209 |
+
if attention_mask is not None:
|
210 |
+
causal_mask = (
|
211 |
+
causal_mask.clone()
|
212 |
+
) # copy to contiguous memory for in-place edit
|
213 |
+
if attention_mask.dim() == 2:
|
214 |
+
mask_length = attention_mask.shape[-1]
|
215 |
+
padding_mask = (
|
216 |
+
causal_mask[:, :, :, :mask_length]
|
217 |
+
+ attention_mask[:, None, None, :]
|
218 |
+
)
|
219 |
+
padding_mask = padding_mask == 0
|
220 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
221 |
+
:, :, :, :mask_length
|
222 |
+
].masked_fill(padding_mask, min_dtype)
|
223 |
+
|
224 |
+
if (
|
225 |
+
self.config._attn_implementation == "sdpa"
|
226 |
+
and attention_mask is not None
|
227 |
+
and attention_mask.device.type == "cuda"
|
228 |
+
and not output_attentions
|
229 |
+
):
|
230 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
231 |
+
causal_mask, min_dtype
|
232 |
+
)
|
233 |
+
|
234 |
+
return causal_mask
|
235 |
+
|
236 |
+
|
237 |
+
class MistralBiForCausalLM(MistralForCausalLM):
|
238 |
+
def __init__(self, config):
|
239 |
+
MistralPreTrainedModel.__init__(self, config)
|
240 |
+
self.model = MistralBiModel(config)
|
241 |
+
self.vocab_size = config.vocab_size
|
242 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
243 |
+
|
244 |
+
# Initialize weights and apply final processing
|
245 |
+
self.post_init()
|
246 |
+
|
247 |
+
# getter for PEFT model
|
248 |
+
def get_model_for_peft(self):
|
249 |
+
return self.model
|
250 |
+
|
251 |
+
# setter for PEFT model
|
252 |
+
def set_model_for_peft(self, model: PeftModel):
|
253 |
+
self.model = model
|
254 |
+
|
255 |
+
# save the PEFT model
|
256 |
+
def save_peft_model(self, path):
|
257 |
+
self.model.save_pretrained(path)
|