End of training
Browse files
README.md
CHANGED
@@ -17,15 +17,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the yijisuk/ic-chip-sample dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Mean Iou: 0.
|
22 |
-
- Mean Accuracy: 0.
|
23 |
-
- Overall Accuracy: 0.
|
24 |
- Accuracy Unlabeled: nan
|
25 |
-
- Accuracy Circuit: 0.
|
26 |
- Iou Unlabeled: 0.0
|
27 |
-
- Iou Circuit: 0.
|
28 |
-
- Dice Coefficient: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -56,46 +56,22 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | Dice Coefficient |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|:----------------:|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.406 | 21.25 | 1700 | 0.2344 | 0.4000 | 0.8000 | 0.8000 | nan | 0.8000 | 0.0 | 0.8000 | 0.7823 |
|
76 |
-
| 0.3998 | 22.5 | 1800 | 0.2204 | 0.4185 | 0.8369 | 0.8369 | nan | 0.8369 | 0.0 | 0.8369 | 0.8059 |
|
77 |
-
| 0.3915 | 23.75 | 1900 | 0.2418 | 0.3367 | 0.6734 | 0.6734 | nan | 0.6734 | 0.0 | 0.6734 | 0.6917 |
|
78 |
-
| 0.3836 | 25.0 | 2000 | 0.2231 | 0.3937 | 0.7874 | 0.7874 | nan | 0.7874 | 0.0 | 0.7874 | 0.7747 |
|
79 |
-
| 0.3824 | 26.25 | 2100 | 0.2249 | 0.4043 | 0.8086 | 0.8086 | nan | 0.8086 | 0.0 | 0.8086 | 0.7848 |
|
80 |
-
| 0.3869 | 27.5 | 2200 | 0.2233 | 0.3705 | 0.7411 | 0.7411 | nan | 0.7411 | 0.0 | 0.7411 | 0.7408 |
|
81 |
-
| 0.3707 | 28.75 | 2300 | 0.2259 | 0.4543 | 0.9086 | 0.9086 | nan | 0.9086 | 0.0 | 0.9086 | 0.8453 |
|
82 |
-
| 0.3671 | 30.0 | 2400 | 0.2335 | 0.4435 | 0.8870 | 0.8870 | nan | 0.8870 | 0.0 | 0.8870 | 0.8331 |
|
83 |
-
| 0.3758 | 31.25 | 2500 | 0.2324 | 0.4316 | 0.8631 | 0.8631 | nan | 0.8631 | 0.0 | 0.8631 | 0.8205 |
|
84 |
-
| 0.3768 | 32.5 | 2600 | 0.2324 | 0.3643 | 0.7286 | 0.7286 | nan | 0.7286 | 0.0 | 0.7286 | 0.7372 |
|
85 |
-
| 0.3657 | 33.75 | 2700 | 0.2357 | 0.3689 | 0.7378 | 0.7378 | nan | 0.7378 | 0.0 | 0.7378 | 0.7381 |
|
86 |
-
| 0.3558 | 35.0 | 2800 | 0.2264 | 0.3836 | 0.7673 | 0.7673 | nan | 0.7673 | 0.0 | 0.7673 | 0.7593 |
|
87 |
-
| 0.3586 | 36.25 | 2900 | 0.2265 | 0.4049 | 0.8098 | 0.8098 | nan | 0.8098 | 0.0 | 0.8098 | 0.7887 |
|
88 |
-
| 0.3435 | 37.5 | 3000 | 0.2269 | 0.4124 | 0.8248 | 0.8248 | nan | 0.8248 | 0.0 | 0.8248 | 0.7985 |
|
89 |
-
| 0.3659 | 38.75 | 3100 | 0.2282 | 0.3803 | 0.7606 | 0.7606 | nan | 0.7606 | 0.0 | 0.7606 | 0.7571 |
|
90 |
-
| 0.3482 | 40.0 | 3200 | 0.2233 | 0.4160 | 0.8320 | 0.8320 | nan | 0.8320 | 0.0 | 0.8320 | 0.8040 |
|
91 |
-
| 0.3452 | 41.25 | 3300 | 0.2208 | 0.4222 | 0.8445 | 0.8445 | nan | 0.8445 | 0.0 | 0.8445 | 0.8151 |
|
92 |
-
| 0.3582 | 42.5 | 3400 | 0.2332 | 0.4016 | 0.8032 | 0.8032 | nan | 0.8032 | 0.0 | 0.8032 | 0.7845 |
|
93 |
-
| 0.3254 | 43.75 | 3500 | 0.2171 | 0.4157 | 0.8314 | 0.8314 | nan | 0.8314 | 0.0 | 0.8314 | 0.8053 |
|
94 |
-
| 0.3485 | 45.0 | 3600 | 0.2422 | 0.4345 | 0.8690 | 0.8690 | nan | 0.8690 | 0.0 | 0.8690 | 0.8163 |
|
95 |
-
| 0.3401 | 46.25 | 3700 | 0.2263 | 0.4178 | 0.8356 | 0.8356 | nan | 0.8356 | 0.0 | 0.8356 | 0.8032 |
|
96 |
-
| 0.3276 | 47.5 | 3800 | 0.2226 | 0.4347 | 0.8694 | 0.8694 | nan | 0.8694 | 0.0 | 0.8694 | 0.8254 |
|
97 |
-
| 0.3637 | 48.75 | 3900 | 0.2284 | 0.4164 | 0.8329 | 0.8329 | nan | 0.8329 | 0.0 | 0.8329 | 0.8036 |
|
98 |
-
| 0.3181 | 50.0 | 4000 | 0.2325 | 0.4242 | 0.8484 | 0.8484 | nan | 0.8484 | 0.0 | 0.8484 | 0.8124 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the yijisuk/ic-chip-sample dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2720
|
21 |
+
- Mean Iou: 0.4437
|
22 |
+
- Mean Accuracy: 0.8874
|
23 |
+
- Overall Accuracy: 0.8874
|
24 |
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Circuit: 0.8874
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Circuit: 0.8874
|
28 |
+
- Dice Coefficient: 0.8076
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | Dice Coefficient |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|:----------------:|
|
59 |
+
| 0.6147 | 3.12 | 250 | 0.5121 | 0.4257 | 0.8515 | 0.8515 | nan | 0.8515 | 0.0 | 0.8515 | 0.7260 |
|
60 |
+
| 0.5757 | 6.25 | 500 | 0.3833 | 0.2639 | 0.5277 | 0.5277 | nan | 0.5277 | 0.0 | 0.5277 | 0.4226 |
|
61 |
+
| 0.5378 | 9.38 | 750 | 0.2758 | 0.4087 | 0.8174 | 0.8174 | nan | 0.8174 | 0.0 | 0.8174 | 0.7551 |
|
62 |
+
| 0.5127 | 12.5 | 1000 | 0.2915 | 0.2967 | 0.5933 | 0.5933 | nan | 0.5933 | 0.0 | 0.5933 | 0.5977 |
|
63 |
+
| 0.4838 | 15.62 | 1250 | 0.3783 | 0.4100 | 0.8200 | 0.8200 | nan | 0.8200 | 0.0 | 0.8200 | 0.7433 |
|
64 |
+
| 0.4763 | 18.75 | 1500 | 0.3150 | 0.4422 | 0.8844 | 0.8844 | nan | 0.8844 | 0.0 | 0.8844 | 0.7948 |
|
65 |
+
| 0.4509 | 21.88 | 1750 | 0.3324 | 0.4464 | 0.8928 | 0.8928 | nan | 0.8928 | 0.0 | 0.8928 | 0.7829 |
|
66 |
+
| 0.4367 | 25.0 | 2000 | 0.2373 | 0.4440 | 0.8880 | 0.8880 | nan | 0.8880 | 0.0 | 0.8880 | 0.8142 |
|
67 |
+
| 0.4236 | 28.12 | 2250 | 0.2457 | 0.4023 | 0.8046 | 0.8046 | nan | 0.8046 | 0.0 | 0.8046 | 0.7656 |
|
68 |
+
| 0.42 | 31.25 | 2500 | 0.2622 | 0.3672 | 0.7343 | 0.7343 | nan | 0.7343 | 0.0 | 0.7343 | 0.7106 |
|
69 |
+
| 0.403 | 34.38 | 2750 | 0.2472 | 0.4470 | 0.8941 | 0.8941 | nan | 0.8941 | 0.0 | 0.8941 | 0.8200 |
|
70 |
+
| 0.3946 | 37.5 | 3000 | 0.3254 | 0.4648 | 0.9295 | 0.9295 | nan | 0.9295 | 0.0 | 0.9295 | 0.8138 |
|
71 |
+
| 0.3848 | 40.62 | 3250 | 0.2792 | 0.4209 | 0.8418 | 0.8418 | nan | 0.8418 | 0.0 | 0.8418 | 0.7813 |
|
72 |
+
| 0.3821 | 43.75 | 3500 | 0.2849 | 0.4217 | 0.8434 | 0.8434 | nan | 0.8434 | 0.0 | 0.8434 | 0.7804 |
|
73 |
+
| 0.3756 | 46.88 | 3750 | 0.2722 | 0.4401 | 0.8801 | 0.8801 | nan | 0.8801 | 0.0 | 0.8801 | 0.8058 |
|
74 |
+
| 0.3727 | 50.0 | 4000 | 0.2720 | 0.4437 | 0.8874 | 0.8874 | nan | 0.8874 | 0.0 | 0.8874 | 0.8076 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 54737376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b4a77f455bdc4b54c760c626fc71c25271fd533cce16f43dc6236ab2a859f84
|
3 |
size 54737376
|
runs/Jun25_16-36-27_Centauri/events.out.tfevents.1719304916.Centauri.23712.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85fd6dca0e15d7b8e9bddcab6a936ed94919d2cce86356d0031e1805a45e4fb4
|
3 |
+
size 19487
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4271
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cd6722b409bc9a601db66af8f7cad4a79325657397987a6692a59f395b3eca0
|
3 |
size 4271
|