--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-espaniol results: [] --- # whisper-medium-espaniol This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4883 - Wer: 11.4190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2124 | 1.8692 | 1000 | 0.3589 | 12.5527 | | 0.0308 | 3.7383 | 2000 | 0.4321 | 12.7264 | | 0.0035 | 5.6075 | 3000 | 0.4681 | 11.7641 | | 0.0011 | 7.4766 | 4000 | 0.4883 | 11.4190 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.2