--- license: cc-by-nc-4.0 base_model: mlabonne/Monarch-7B datasets: - yleo/emerton_dpo_pairs_judge tags: - dpo --- --- # 🦜 EmertonMonarch-7B EmertonOmniBeagle-7B-dpo is a DPO fine-tune of [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) using the [yleo/emerton_dpo_pairs_judge](https://huggingface.co/datasets/yleo/emerton_dpo_pairs_judge) preference dataset created from [Intel/orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs) by replacing gpt 3.5 answer by a gpt4 Turbo answer. Then, gpt4 Turbo is put as chosen whereas gpt4 is put as rejected. ## 🔍 Applications This model uses a context window of 8k. It is compatible with different templates, like chatml and Llama's chat template. ## 🏆 Evaluation ### Open LLM Leaderboard To come... ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "yleo/EmertonMonarch-7B" messages = [{"role": "user", "content": "How to improve LLM fine-tuning?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```