Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,12 @@ metrics:
|
|
11 |
model-index:
|
12 |
- name: deberta-v3-base-pii-en
|
13 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,68 +24,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# deberta-v3-base-pii-en
|
20 |
|
21 |
-
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.0767
|
24 |
-
- Bod F1: 0.9705
|
25 |
-
- Building F1: 0.9869
|
26 |
-
- Cardissuer F1: 1.0
|
27 |
-
- City F1: 0.9781
|
28 |
-
- Country F1: 0.9773
|
29 |
-
- Date F1: 0.9374
|
30 |
-
- Driverlicense F1: 0.9645
|
31 |
-
- Email F1: 0.9850
|
32 |
-
- Geocoord F1: 0.9769
|
33 |
-
- Givenname1 F1: 0.8810
|
34 |
-
- Givenname2 F1: 0.7996
|
35 |
-
- Idcard F1: 0.9443
|
36 |
-
- Ip F1: 0.9873
|
37 |
-
- Lastname1 F1: 0.8433
|
38 |
-
- Lastname2 F1: 0.7641
|
39 |
-
- Lastname3 F1: 0.7696
|
40 |
-
- Pass F1: 0.9603
|
41 |
-
- Passport F1: 0.9619
|
42 |
-
- Postcode F1: 0.9820
|
43 |
-
- Secaddress F1: 0.9791
|
44 |
-
- Sex F1: 0.9782
|
45 |
-
- Socialnumber F1: 0.9615
|
46 |
-
- State F1: 0.9878
|
47 |
-
- Street F1: 0.9815
|
48 |
-
- Tel F1: 0.9767
|
49 |
-
- Time F1: 0.9762
|
50 |
-
- Title F1: 0.9668
|
51 |
-
- Username F1: 0.9606
|
52 |
-
- Precision: 0.9504
|
53 |
-
- Recall: 0.9625
|
54 |
-
- F1: 0.9564
|
55 |
-
- Accuracy: 0.9904
|
56 |
|
57 |
-
|
|
|
|
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
62 |
|
63 |
-
More information needed
|
64 |
-
|
65 |
-
## Training and evaluation data
|
66 |
-
|
67 |
-
More information needed
|
68 |
-
|
69 |
-
## Training procedure
|
70 |
-
|
71 |
-
### Training hyperparameters
|
72 |
-
|
73 |
-
The following hyperparameters were used during training:
|
74 |
-
- learning_rate: 2e-05
|
75 |
-
- train_batch_size: 32
|
76 |
-
- eval_batch_size: 64
|
77 |
-
- seed: 42
|
78 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
-
- lr_scheduler_type: cosine
|
80 |
-
- lr_scheduler_warmup_ratio: 0.2
|
81 |
-
- lr_scheduler_warmup_steps: 3000
|
82 |
-
- training_steps: 30000
|
83 |
|
84 |
### Training results
|
85 |
|
@@ -122,4 +78,4 @@ The following hyperparameters were used during training:
|
|
122 |
- Transformers 4.41.2
|
123 |
- Pytorch 2.3.1+cu121
|
124 |
- Datasets 2.20.0
|
125 |
-
- Tokenizers 0.19.1
|
|
|
11 |
model-index:
|
12 |
- name: deberta-v3-base-pii-en
|
13 |
results: []
|
14 |
+
pipeline_tag: token-classification
|
15 |
+
widget:
|
16 |
+
- text: My name is Yoni Go and I live in Israel. My phone number is 054-1234567
|
17 |
+
inference:
|
18 |
+
parameters:
|
19 |
+
aggregation_strategy: first
|
20 |
---
|
21 |
|
22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
24 |
|
25 |
# deberta-v3-base-pii-en
|
26 |
|
27 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on English samples from [ai4privacy/pii-masking-300k](https://huggingface.co/datasets/ai4privacy/pii-masking-300k).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
Usage:
|
30 |
+
```python
|
31 |
+
from transformers import pipeline
|
32 |
|
33 |
+
pipe = pipeline("token-classification", model="yonigo/deberta-v3-base-pii-en", aggregation_strategy="first")
|
34 |
+
pipe("My name is Yoni Go and I live in Israel. My phone number is 054-1234567")
|
35 |
+
```
|
36 |
|
37 |
+
training code [git](https://github.com/yonigottesman/pii-model)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
### Training results
|
41 |
|
|
|
78 |
- Transformers 4.41.2
|
79 |
- Pytorch 2.3.1+cu121
|
80 |
- Datasets 2.20.0
|
81 |
+
- Tokenizers 0.19.1
|