--- license: cc-by-sa-4.0 base_model: klue/bert-base tags: - generated_from_trainer datasets: - klue metrics: - accuracy model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: ynat split: validation args: ynat metrics: - name: Accuracy type: accuracy value: 0.8659273086636653 --- # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3691 - Accuracy: 0.8659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 90 | 0.4090 | 0.8599 | | No log | 2.0 | 180 | 0.3929 | 0.8578 | | No log | 3.0 | 270 | 0.3703 | 0.8648 | | No log | 4.0 | 360 | 0.3714 | 0.8631 | | No log | 5.0 | 450 | 0.3691 | 0.8659 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.14.1