File size: 1,529 Bytes
6ffd59f 0955830 6ffd59f 0955830 6ffd59f c37e536 6ffd59f c37e536 6ffd59f c37e536 6ffd59f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
model-index:
- name: llama-3.2-amharic-32k-1024-v8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-3.2-amharic-32k-1024-v8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 3.9086
- eval_model_preparation_time: 0.0016
- eval_runtime: 16.8971
- eval_samples_per_second: 619.276
- eval_steps_per_second: 5.563
- epoch: 13.5067
- step: 130151
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 112
- eval_batch_size: 112
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 2000
- num_epochs: 16
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|