--- language: - en license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - jlvdoorn/atco2-asr-atcosim metrics: - wer model-index: - name: Whisper Large - Whisper with atco2-asr-atcosim results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM.' type: jlvdoorn/atco2-asr-atcosim args: 'config: en, split: test' metrics: - name: Wer type: wer value: 2.642174131857071 --- # Whisper Large - Whisper with atco2-asr-atcosim This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM. dataset. It achieves the following results on the evaluation set: - Loss: 0.0715 - Wer: 2.6422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0547 | 1.9763 | 1000 | 0.0675 | 4.0346 | | 0.0115 | 3.9526 | 2000 | 0.0690 | 2.8309 | | 0.003 | 5.9289 | 3000 | 0.0682 | 2.6212 | | 0.0003 | 7.9051 | 4000 | 0.0715 | 2.6422 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1