--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 27.4606 --- # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5400 - Rouge1: 27.4606 - Rouge2: 7.3882 - Rougel: 21.5683 - Rougelsum: 21.5769 - Gen Len: 18.8013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.8393 | 1.0 | 2500 | 2.5833 | 26.7701 | 6.8545 | 20.9017 | 20.9024 | 18.8193 | | 2.7625 | 2.0 | 5000 | 2.5494 | 27.2012 | 7.1774 | 21.2519 | 21.2529 | 18.8019 | | 2.7673 | 3.0 | 7500 | 2.5400 | 27.4606 | 7.3882 | 21.5683 | 21.5769 | 18.8013 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1