--- base_model: sentence-transformers/all-MiniLM-L6-v2 language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1363306 - loss:CoSENTLoss widget: - source_sentence: labneh sentences: - iftar - bathing suit - coffee cup - source_sentence: Velvet flock Veil sentences: - mermaid purse - veil - mobile bag - source_sentence: Red lipstick sentences: - chemise dress - tote - rouge - source_sentence: Unisex Travel bag sentences: - spf - basic vega ring - travel backpack - source_sentence: jeremy hush book sentences: - chinese jumper - perfume - home automation device --- # all-MiniLM-L6-v4-pair_score This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'jeremy hush book', 'chinese jumper', 'perfume', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | loss | |:------:|:-----:|:-------------:|:------:| | 0.0094 | 100 | 17.0123 | - | | 0.0188 | 200 | 16.3963 | - | | 0.0282 | 300 | 14.9883 | - | | 0.0376 | 400 | 12.5378 | - | | 0.0469 | 500 | 9.8375 | - | | 0.0563 | 600 | 8.4884 | - | | 0.0657 | 700 | 8.2217 | - | | 0.0751 | 800 | 8.1311 | - | | 0.0845 | 900 | 8.104 | - | | 0.0939 | 1000 | 8.0921 | - | | 0.1033 | 1100 | 8.0568 | - | | 0.1127 | 1200 | 8.0567 | - | | 0.1221 | 1300 | 8.0534 | - | | 0.1314 | 1400 | 8.0189 | - | | 0.1408 | 1500 | 8.0172 | - | | 0.1502 | 1600 | 8.0291 | - | | 0.1596 | 1700 | 8.0396 | - | | 0.1690 | 1800 | 8.0527 | - | | 0.1784 | 1900 | 8.0543 | - | | 0.1878 | 2000 | 8.0244 | - | | 0.1972 | 2100 | 8.0294 | - | | 0.2066 | 2200 | 8.019 | - | | 0.2159 | 2300 | 7.9946 | - | | 0.2253 | 2400 | 8.0233 | - | | 0.2347 | 2500 | 8.0058 | - | | 0.2441 | 2600 | 8.0146 | - | | 0.2535 | 2700 | 8.0116 | - | | 0.2629 | 2800 | 7.9843 | - | | 0.2723 | 2900 | 8.0226 | - | | 0.2817 | 3000 | 7.991 | - | | 0.2911 | 3100 | 8.0041 | - | | 0.3004 | 3200 | 8.025 | - | | 0.3098 | 3300 | 7.9913 | - | | 0.3192 | 3400 | 7.9852 | - | | 0.3286 | 3500 | 8.0103 | - | | 0.3380 | 3600 | 7.9911 | - | | 0.3474 | 3700 | 7.9892 | - | | 0.3568 | 3800 | 7.9605 | - | | 0.3662 | 3900 | 8.011 | - | | 0.3756 | 4000 | 7.9894 | - | | 0.3849 | 4100 | 7.9658 | - | | 0.3943 | 4200 | 7.9791 | - | | 0.4037 | 4300 | 7.9717 | - | | 0.4131 | 4400 | 8.0139 | - | | 0.4225 | 4500 | 7.9691 | - | | 0.4319 | 4600 | 8.0115 | - | | 0.4413 | 4700 | 8.0245 | - | | 0.4507 | 4800 | 8.0289 | - | | 0.4601 | 4900 | 7.9644 | - | | 0.4694 | 5000 | 7.9851 | 7.9703 | | 0.4788 | 5100 | 7.9594 | - | | 0.4882 | 5200 | 7.9618 | - | | 0.4976 | 5300 | 7.9917 | - | | 0.5070 | 5400 | 7.988 | - | | 0.5164 | 5500 | 8.0203 | - | | 0.5258 | 5600 | 7.9738 | - | | 0.5352 | 5700 | 7.9614 | - | | 0.5445 | 5800 | 7.9567 | - | | 0.5539 | 5900 | 7.9721 | - | | 0.5633 | 6000 | 7.96 | - | | 0.5727 | 6100 | 7.9376 | - | | 0.5821 | 6200 | 7.9901 | - | | 0.5915 | 6300 | 7.9559 | - | | 0.6009 | 6400 | 7.9548 | - | | 0.6103 | 6500 | 8.0004 | - | | 0.6197 | 6600 | 7.9607 | - | | 0.6290 | 6700 | 7.9779 | - | | 0.6384 | 6800 | 7.9401 | - | | 0.6478 | 6900 | 7.9695 | - | | 0.6572 | 7000 | 7.9667 | - | | 0.6666 | 7100 | 7.9679 | - | | 0.6760 | 7200 | 7.9821 | - | | 0.6854 | 7300 | 7.9981 | - | | 0.6948 | 7400 | 7.975 | - | | 0.7042 | 7500 | 7.9438 | - | | 0.7135 | 7600 | 7.9611 | - | | 0.7229 | 7700 | 7.9501 | - | | 0.7323 | 7800 | 7.9565 | - | | 0.7417 | 7900 | 7.9199 | - | | 0.7511 | 8000 | 7.9601 | - | | 0.7605 | 8100 | 7.9208 | - | | 0.7699 | 8200 | 7.9488 | - | | 0.7793 | 8300 | 7.9519 | - | | 0.7887 | 8400 | 7.9806 | - | | 0.7980 | 8500 | 7.9557 | - | | 0.8074 | 8600 | 7.9383 | - | | 0.8168 | 8700 | 7.9541 | - | | 0.8262 | 8800 | 7.9529 | - | | 0.8356 | 8900 | 7.9463 | - | | 0.8450 | 9000 | 7.9674 | - | | 0.8544 | 9100 | 7.9454 | - | | 0.8638 | 9200 | 7.9613 | - | | 0.8732 | 9300 | 7.9119 | - | | 0.8825 | 9400 | 7.9806 | - | | 0.8919 | 9500 | 7.9449 | - | | 0.9013 | 9600 | 7.9254 | - | | 0.9107 | 9700 | 7.9156 | - | | 0.9201 | 9800 | 7.9105 | - | | 0.9295 | 9900 | 7.9668 | - | | 0.9389 | 10000 | 7.9922 | 7.9137 | | 0.9483 | 10100 | 7.9261 | - | | 0.9577 | 10200 | 7.9134 | - | | 0.9670 | 10300 | 7.8968 | - | | 0.9764 | 10400 | 7.9086 | - | | 0.9858 | 10500 | 7.9609 | - | | 0.9952 | 10600 | 7.9125 | - | | 1.0046 | 10700 | 7.8816 | - | | 1.0140 | 10800 | 7.9558 | - | | 1.0234 | 10900 | 7.9357 | - | | 1.0328 | 11000 | 7.9212 | - | | 1.0422 | 11100 | 7.9305 | - | | 1.0515 | 11200 | 7.9073 | - | | 1.0609 | 11300 | 7.9016 | - | | 1.0703 | 11400 | 7.9321 | - | | 1.0797 | 11500 | 7.8765 | - | | 1.0891 | 11600 | 7.8907 | - | | 1.0985 | 11700 | 7.9338 | - | | 1.1079 | 11800 | 7.9163 | - | | 1.1173 | 11900 | 7.8892 | - | | 1.1267 | 12000 | 7.9261 | - | | 1.1360 | 12100 | 7.8846 | - | | 1.1454 | 12200 | 7.8976 | - | | 1.1548 | 12300 | 7.8796 | - | | 1.1642 | 12400 | 7.9041 | - | | 1.1736 | 12500 | 7.9181 | - | | 1.1830 | 12600 | 7.8944 | - | | 1.1924 | 12700 | 7.9168 | - | | 1.2018 | 12800 | 7.9122 | - | | 1.2112 | 12900 | 7.9006 | - | | 1.2205 | 13000 | 7.916 | - | | 1.2299 | 13100 | 7.8994 | - | | 1.2393 | 13200 | 7.8785 | - | | 1.2487 | 13300 | 7.8751 | - | | 1.2581 | 13400 | 7.9022 | - | | 1.2675 | 13500 | 7.8806 | - | | 1.2769 | 13600 | 7.9056 | - | | 1.2863 | 13700 | 7.889 | - | | 1.2957 | 13800 | 7.9155 | - | | 1.3050 | 13900 | 7.9346 | - | | 1.3144 | 14000 | 7.8537 | - | | 1.3238 | 14100 | 7.8961 | - | | 1.3332 | 14200 | 7.8977 | - | | 1.3426 | 14300 | 7.887 | - | | 1.3520 | 14400 | 7.8839 | - | | 1.3614 | 14500 | 7.9331 | - | | 1.3708 | 14600 | 7.8964 | - | | 1.3802 | 14700 | 7.8773 | - | | 1.3895 | 14800 | 7.8749 | - | | 1.3989 | 14900 | 7.8824 | - | | 1.4083 | 15000 | 7.8987 | 7.8832 | | 1.4177 | 15100 | 7.8683 | - | | 1.4271 | 15200 | 7.9177 | - | | 1.4365 | 15300 | 7.8573 | - | | 1.4459 | 15400 | 7.8797 | - | | 1.4553 | 15500 | 7.8577 | - | | 1.4647 | 15600 | 7.8827 | - | | 1.4740 | 15700 | 7.8548 | - | | 1.4834 | 15800 | 7.906 | - | | 1.4928 | 15900 | 7.8808 | - | | 1.5022 | 16000 | 7.8886 | - | | 1.5116 | 16100 | 7.872 | - | | 1.5210 | 16200 | 7.8746 | - | | 1.5304 | 16300 | 7.8855 | - | | 1.5398 | 16400 | 7.8549 | - | | 1.5492 | 16500 | 7.8727 | - | | 1.5585 | 16600 | 7.887 | - | | 1.5679 | 16700 | 7.8534 | - | | 1.5773 | 16800 | 7.888 | - | | 1.5867 | 16900 | 7.8525 | - | | 1.5961 | 17000 | 7.8818 | - | | 1.6055 | 17100 | 7.9097 | - | | 1.6149 | 17200 | 7.855 | - | | 1.6243 | 17300 | 7.8925 | - | | 1.6336 | 17400 | 7.8652 | - | | 1.6430 | 17500 | 7.866 | - | | 1.6524 | 17600 | 7.8411 | - | | 1.6618 | 17700 | 7.8525 | - | | 1.6712 | 17800 | 7.8651 | - | | 1.6806 | 17900 | 7.8411 | - | | 1.6900 | 18000 | 7.8622 | - | | 1.6994 | 18100 | 7.8833 | - | | 1.7088 | 18200 | 7.9135 | - | | 1.7181 | 18300 | 7.8527 | - | | 1.7275 | 18400 | 7.8451 | - | | 1.7369 | 18500 | 7.8766 | - | | 1.7463 | 18600 | 7.8375 | - | | 1.7557 | 18700 | 7.8433 | - | | 1.7651 | 18800 | 7.8321 | - | | 1.7745 | 18900 | 7.8594 | - | | 1.7839 | 19000 | 7.8398 | - | | 1.7933 | 19100 | 7.8764 | - | | 1.8026 | 19200 | 7.841 | - | | 1.8120 | 19300 | 7.8515 | - | | 1.8214 | 19400 | 7.8458 | - | | 1.8308 | 19500 | 7.8409 | - | | 1.8402 | 19600 | 7.8768 | - | | 1.8496 | 19700 | 7.8533 | - | | 1.8590 | 19800 | 7.8538 | - | | 1.8684 | 19900 | 7.8547 | - | | 1.8778 | 20000 | 7.8522 | 7.8474 | | 1.8871 | 20100 | 7.87 | - | | 1.8965 | 20200 | 7.8586 | - | | 1.9059 | 20300 | 7.8529 | - | | 1.9153 | 20400 | 7.8373 | - | | 1.9247 | 20500 | 7.8239 | - | | 1.9341 | 20600 | 7.8782 | - | | 1.9435 | 20700 | 7.8533 | - | | 1.9529 | 20800 | 7.8403 | - | | 1.9623 | 20900 | 7.8904 | - | | 1.9716 | 21000 | 7.8287 | - | | 1.9810 | 21100 | 7.8844 | - | | 1.9904 | 21200 | 7.8625 | - | | 1.9998 | 21300 | 7.8568 | - | | 2.0092 | 21400 | 7.841 | - | | 2.0186 | 21500 | 7.8214 | - | | 2.0280 | 21600 | 7.8255 | - | | 2.0374 | 21700 | 7.8196 | - | | 2.0468 | 21800 | 7.8441 | - | | 2.0561 | 21900 | 7.8785 | - | | 2.0655 | 22000 | 7.8331 | - | | 2.0749 | 22100 | 7.8516 | - | | 2.0843 | 22200 | 7.8164 | - | | 2.0937 | 22300 | 7.8206 | - | | 2.1031 | 22400 | 7.815 | - | | 2.1125 | 22500 | 7.8048 | - | | 2.1219 | 22600 | 7.8218 | - | | 2.1313 | 22700 | 7.8371 | - | | 2.1406 | 22800 | 7.7967 | - | | 2.1500 | 22900 | 7.8182 | - | | 2.1594 | 23000 | 7.8352 | - | | 2.1688 | 23100 | 7.8565 | - | | 2.1782 | 23200 | 7.8293 | - | | 2.1876 | 23300 | 7.8216 | - | | 2.1970 | 23400 | 7.8155 | - | | 2.2064 | 23500 | 7.8269 | - | | 2.2158 | 23600 | 7.8378 | - | | 2.2251 | 23700 | 7.8056 | - | | 2.2345 | 23800 | 7.827 | - | | 2.2439 | 23900 | 7.8095 | - | | 2.2533 | 24000 | 7.8292 | - | | 2.2627 | 24100 | 7.8349 | - | | 2.2721 | 24200 | 7.8391 | - | | 2.2815 | 24300 | 7.8161 | - | | 2.2909 | 24400 | 7.8053 | - | | 2.3003 | 24500 | 7.8641 | - | | 2.3096 | 24600 | 7.855 | - | | 2.3190 | 24700 | 7.8286 | - | | 2.3284 | 24800 | 7.8605 | - | | 2.3378 | 24900 | 7.828 | - | | 2.3472 | 25000 | 7.8274 | 7.8454 | | 2.3566 | 25100 | 7.8104 | - | | 2.3660 | 25200 | 7.873 | - | | 2.3754 | 25300 | 7.7956 | - | | 2.3848 | 25400 | 7.8135 | - | | 2.3941 | 25500 | 7.8033 | - | | 2.4035 | 25600 | 7.812 | - | | 2.4129 | 25700 | 7.8285 | - | | 2.4223 | 25800 | 7.8062 | - | | 2.4317 | 25900 | 7.8178 | - | | 2.4411 | 26000 | 7.8051 | - | | 2.4505 | 26100 | 7.8255 | - | | 2.4599 | 26200 | 7.8026 | - | | 2.4693 | 26300 | 7.8627 | - | | 2.4786 | 26400 | 7.8018 | - | | 2.4880 | 26500 | 7.787 | - | | 2.4974 | 26600 | 7.8374 | - | | 2.5068 | 26700 | 7.8227 | - | | 2.5162 | 26800 | 7.8076 | - | | 2.5256 | 26900 | 7.7875 | - | | 2.5350 | 27000 | 7.7908 | - | | 2.5444 | 27100 | 7.8162 | - | | 2.5538 | 27200 | 7.7919 | - | | 2.5631 | 27300 | 7.8033 | - | | 2.5725 | 27400 | 7.8147 | - | | 2.5819 | 27500 | 7.8013 | - | | 2.5913 | 27600 | 7.777 | - | | 2.6007 | 27700 | 7.7982 | - | | 2.6101 | 27800 | 7.8025 | - | | 2.6195 | 27900 | 7.79 | - | | 2.6289 | 28000 | 7.8124 | - | | 2.6382 | 28100 | 7.7936 | - | | 2.6476 | 28200 | 7.7793 | - | | 2.6570 | 28300 | 7.8126 | - | | 2.6664 | 28400 | 7.8149 | - | | 2.6758 | 28500 | 7.7919 | - | | 2.6852 | 28600 | 7.8127 | - | | 2.6946 | 28700 | 7.8339 | - | | 2.7040 | 28800 | 7.805 | - | | 2.7134 | 28900 | 7.794 | - | | 2.7227 | 29000 | 7.777 | - | | 2.7321 | 29100 | 7.7888 | - | | 2.7415 | 29200 | 7.8384 | - | | 2.7509 | 29300 | 7.8175 | - | | 2.7603 | 29400 | 7.8394 | - | | 2.7697 | 29500 | 7.7813 | - | | 2.7791 | 29600 | 7.8205 | - | | 2.7885 | 29700 | 7.7982 | - | | 2.7979 | 29800 | 7.7904 | - | | 2.8072 | 29900 | 7.8107 | - | | 2.8166 | 30000 | 7.8217 | 7.8158 | | 2.8260 | 30100 | 7.7893 | - | | 2.8354 | 30200 | 7.8139 | - | | 2.8448 | 30300 | 7.8097 | - | | 2.8542 | 30400 | 7.7966 | - | | 2.8636 | 30500 | 7.7895 | - | | 2.8730 | 30600 | 7.7914 | - | | 2.8824 | 30700 | 7.8095 | - | | 2.8917 | 30800 | 7.7943 | - | | 2.9011 | 30900 | 7.8001 | - | | 2.9105 | 31000 | 7.8299 | - | | 2.9199 | 31100 | 7.7804 | - | | 2.9293 | 31200 | 7.8015 | - | | 2.9387 | 31300 | 7.8038 | - | | 2.9481 | 31400 | 7.7731 | - | | 2.9575 | 31500 | 7.7856 | - | | 2.9669 | 31600 | 7.7935 | - | | 2.9762 | 31700 | 7.7896 | - | | 2.9856 | 31800 | 7.8216 | - | | 2.9950 | 31900 | 7.7841 | - | | 3.0044 | 32000 | 7.7569 | - | | 3.0138 | 32100 | 7.7929 | - | | 3.0232 | 32200 | 7.7738 | - | | 3.0326 | 32300 | 7.7837 | - | | 3.0420 | 32400 | 7.7777 | - | | 3.0514 | 32500 | 7.7829 | - | | 3.0607 | 32600 | 7.7585 | - | | 3.0701 | 32700 | 7.7896 | - | | 3.0795 | 32800 | 7.7873 | - | | 3.0889 | 32900 | 7.7904 | - | | 3.0983 | 33000 | 7.7808 | - | | 3.1077 | 33100 | 7.7871 | - | | 3.1171 | 33200 | 7.7835 | - | | 3.1265 | 33300 | 7.7819 | - | | 3.1359 | 33400 | 7.8037 | - | | 3.1452 | 33500 | 7.7585 | - | | 3.1546 | 33600 | 7.7928 | - | | 3.1640 | 33700 | 7.7751 | - | | 3.1734 | 33800 | 7.7829 | - | | 3.1828 | 33900 | 7.7723 | - | | 3.1922 | 34000 | 7.7999 | - | | 3.2016 | 34100 | 7.757 | - | | 3.2110 | 34200 | 7.7682 | - | | 3.2204 | 34300 | 7.784 | - | | 3.2297 | 34400 | 7.7962 | - | | 3.2391 | 34500 | 7.7913 | - | | 3.2485 | 34600 | 7.7768 | - | | 3.2579 | 34700 | 7.7749 | - | | 3.2673 | 34800 | 7.7724 | - | | 3.2767 | 34900 | 7.7786 | - | | 3.2861 | 35000 | 7.775 | 7.8301 | | 3.2955 | 35100 | 7.7702 | - | | 3.3049 | 35200 | 7.7689 | - | | 3.3142 | 35300 | 7.7676 | - | | 3.3236 | 35400 | 7.8029 | - | | 3.3330 | 35500 | 7.7945 | - | | 3.3424 | 35600 | 7.7765 | - | | 3.3518 | 35700 | 7.7799 | - | | 3.3612 | 35800 | 7.7701 | - | | 3.3706 | 35900 | 7.7572 | - | | 3.3800 | 36000 | 7.7656 | - | | 3.3894 | 36100 | 7.8075 | - | | 3.3987 | 36200 | 7.771 | - | | 3.4081 | 36300 | 7.7757 | - | | 3.4175 | 36400 | 7.7713 | - | | 3.4269 | 36500 | 7.7885 | - | | 3.4363 | 36600 | 7.7547 | - | | 3.4457 | 36700 | 7.761 | - | | 3.4551 | 36800 | 7.7797 | - | | 3.4645 | 36900 | 7.7576 | - | | 3.4739 | 37000 | 7.7578 | - | | 3.4832 | 37100 | 7.736 | - | | 3.4926 | 37200 | 7.7532 | - | | 3.5020 | 37300 | 7.7747 | - | | 3.5114 | 37400 | 7.7578 | - | | 3.5208 | 37500 | 7.7632 | - | | 3.5302 | 37600 | 7.7689 | - | | 3.5396 | 37700 | 7.7796 | - | | 3.5490 | 37800 | 7.7897 | - | | 3.5584 | 37900 | 7.7824 | - | | 3.5677 | 38000 | 7.7479 | - | | 3.5771 | 38100 | 7.781 | - | | 3.5865 | 38200 | 7.769 | - | | 3.5959 | 38300 | 7.8087 | - | | 3.6053 | 38400 | 7.7742 | - | | 3.6147 | 38500 | 7.7974 | - | | 3.6241 | 38600 | 7.7661 | - | | 3.6335 | 38700 | 7.758 | - | | 3.6429 | 38800 | 7.7659 | - | | 3.6522 | 38900 | 7.753 | - | | 3.6616 | 39000 | 7.819 | - | | 3.6710 | 39100 | 7.766 | - | | 3.6804 | 39200 | 7.7649 | - | | 3.6898 | 39300 | 7.7684 | - | | 3.6992 | 39400 | 7.7716 | - | | 3.7086 | 39500 | 7.7781 | - | | 3.7180 | 39600 | 7.788 | - | | 3.7273 | 39700 | 7.7834 | - | | 3.7367 | 39800 | 7.7566 | - | | 3.7461 | 39900 | 7.7567 | - | | 3.7555 | 40000 | 7.7804 | 7.8189 | | 3.7649 | 40100 | 7.7559 | - | | 3.7743 | 40200 | 7.7793 | - | | 3.7837 | 40300 | 7.7749 | - | | 3.7931 | 40400 | 7.7773 | - | | 3.8025 | 40500 | 7.7836 | - | | 3.8118 | 40600 | 7.7817 | - | | 3.8212 | 40700 | 7.8036 | - | | 3.8306 | 40800 | 7.7693 | - | | 3.8400 | 40900 | 7.7895 | - | | 3.8494 | 41000 | 7.789 | - | | 3.8588 | 41100 | 7.7432 | - | | 3.8682 | 41200 | 7.7777 | - | | 3.8776 | 41300 | 7.7399 | - | | 3.8870 | 41400 | 7.7629 | - | | 3.8963 | 41500 | 7.7578 | - | | 3.9057 | 41600 | 7.787 | - | | 3.9151 | 41700 | 7.7984 | - | | 3.9245 | 41800 | 7.7842 | - | | 3.9339 | 41900 | 7.7992 | - | | 3.9433 | 42000 | 7.7921 | - | | 3.9527 | 42100 | 7.7986 | - | | 3.9621 | 42200 | 7.7571 | - | | 3.9715 | 42300 | 7.7783 | - | | 3.9808 | 42400 | 7.7636 | - | | 3.9902 | 42500 | 7.7633 | - | | 3.9996 | 42600 | 7.7673 | - |
### Framework Versions - Python: 3.8.10 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.1+cu118 - Accelerate: 1.0.1 - Datasets: 3.0.1 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```