# Wan2.1 I2V model (480p) example ```python from diffusers.utils import load_image, export_to_video from transformers import CLIPVisionModel, CLIPImageProcessor, UMT5EncoderModel, AutoTokenizer from diffusers import WanI2VPipeline, WanTransformer3DModel, UniPCMultistepScheduler, AutoencoderKLWan import torch tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl") text_encoder = UMT5EncoderModel.from_pretrained("google/umt5-xxl", torch_dtype=torch.bfloat16) vae = AutoencoderKLWan.from_pretrained("StevenZhang/Wan2.1-VAE_Diff") pipe = WanI2VPipeline.from_pretrained( 'ypyp/wan2.1_i2v_480p', tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, ) image = load_image( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" ) device = "cuda" seed = 0 prompt = ("An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in " "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot.") generator = torch.Generator(device=device).manual_seed(seed) pipe.to(device) pipe.enable_model_cpu_offload() inputs = { 'image': image, "prompt": prompt, 'max_area': 480 * 832, "generator": generator, "num_inference_steps": 50, "guidance_scale": 5.0, "num_frames": 81, "max_sequence_length": 512, "output_type": "np", 'flow_shift': 3.0 } output = pipe(**inputs).frames[0] export_to_video(output, "output.mp4", fps=15) ```