--- base_model: klue/roberta-large tags: - generated_from_trainer datasets: - klue model-index: - name: sts_klue_roberta_large_ep9 results: [] --- # sts_klue_roberta_large_ep9 This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3567 - Mse: 0.3567 - Mae: 0.4407 - R2: 0.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 1.3093 | 1.0 | 183 | 0.4915 | 0.4915 | 0.5401 | 0.7750 | | 0.2188 | 2.0 | 366 | 0.4399 | 0.4399 | 0.4982 | 0.7986 | | 0.1327 | 3.0 | 549 | 0.4022 | 0.4022 | 0.4647 | 0.8158 | | 0.1043 | 4.0 | 732 | 0.4094 | 0.4094 | 0.4680 | 0.8125 | | 0.074 | 5.0 | 915 | 0.4218 | 0.4218 | 0.4784 | 0.8069 | | 0.0552 | 6.0 | 1098 | 0.3424 | 0.3424 | 0.4356 | 0.8432 | | 0.0394 | 7.0 | 1281 | 0.3925 | 0.3925 | 0.4691 | 0.8203 | | 0.031 | 8.0 | 1464 | 0.3723 | 0.3723 | 0.4510 | 0.8295 | | 0.0234 | 9.0 | 1647 | 0.3567 | 0.3567 | 0.4407 | 0.8367 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3