Upload 3 files
Browse files
tiny-gpt2-fine-tuning/chat.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Load the fine-tuned model and tokenizer
|
5 |
+
model = GPT2LMHeadModel.from_pretrained("./fine-tuned-gpt2")
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained("./fine-tuned-gpt2")
|
7 |
+
|
8 |
+
# Function to generate a response
|
9 |
+
def generate_response(prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.95):
|
10 |
+
# Encode the input prompt
|
11 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
12 |
+
|
13 |
+
# Create an attention mask
|
14 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
15 |
+
|
16 |
+
with torch.no_grad():
|
17 |
+
output = model.generate(
|
18 |
+
input_ids,
|
19 |
+
attention_mask=attention_mask, # Add attention mask
|
20 |
+
max_length=max_length, # Adjust as needed
|
21 |
+
temperature=temperature, # Sampling temperature
|
22 |
+
top_k=top_k, # Top-k sampling
|
23 |
+
top_p=top_p, # Top-p (nucleus) sampling
|
24 |
+
do_sample=True, # Enable sampling
|
25 |
+
pad_token_id=tokenizer.eos_token_id # Handle padding token
|
26 |
+
)
|
27 |
+
|
28 |
+
# Decode the output
|
29 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
+
return response
|
31 |
+
|
32 |
+
# Chat with the model
|
33 |
+
if __name__ == "__main__":
|
34 |
+
print("Chat with the model (type 'exit' to quit)")
|
35 |
+
while True:
|
36 |
+
prompt = input("You: ")
|
37 |
+
if prompt.lower() in ["exit", "quit", "bye"]:
|
38 |
+
print("Goodbye!")
|
39 |
+
break
|
40 |
+
response = generate_response(prompt)
|
41 |
+
print("Bot:", response)
|
tiny-gpt2-fine-tuning/fine-tuning.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TrainingArguments, Trainer
|
2 |
+
from datasets import Dataset
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the pre-trained tokenizer and model
|
6 |
+
model_name = "sshleifer/tiny-gpt2"
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
8 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Set the pad token to be the same as the eos token
|
11 |
+
tokenizer.pad_token = tokenizer.eos_token
|
12 |
+
|
13 |
+
# Function to read the text file and return a list of texts
|
14 |
+
def read_text_file(file_path):
|
15 |
+
with open(file_path, "r") as file:
|
16 |
+
text = file.read()
|
17 |
+
return text.splitlines()
|
18 |
+
|
19 |
+
# Load and process your data
|
20 |
+
file_path = "data.txt" # Replace with the path to your data.txt
|
21 |
+
texts = read_text_file(file_path)
|
22 |
+
|
23 |
+
# Create a Dataset object
|
24 |
+
dataset = Dataset.from_dict({"text": texts})
|
25 |
+
|
26 |
+
# Split the dataset into training and evaluation sets
|
27 |
+
train_testdatasets = dataset.train_test_split(test_size=0.1)
|
28 |
+
train_dataset = train_testdatasets["train"]
|
29 |
+
eval_dataset = train_testdatasets["test"]
|
30 |
+
|
31 |
+
# Tokenize the dataset and prepare labels
|
32 |
+
def tokenize_function(examples):
|
33 |
+
encoding = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
|
34 |
+
encoding["labels"] = encoding["input_ids"].copy() # Labels are the same as input_ids
|
35 |
+
return encoding
|
36 |
+
|
37 |
+
tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
38 |
+
tokenized_eval_dataset = eval_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
39 |
+
|
40 |
+
# Set up training arguments
|
41 |
+
training_args = TrainingArguments(
|
42 |
+
output_dir="./results", # Output directory for model predictions and checkpoints
|
43 |
+
overwrite_output_dir=True, # Overwrite the content of the output directory
|
44 |
+
num_train_epochs=5, # Number of training epochs
|
45 |
+
per_device_train_batch_size=2, # Batch size per GPU/TPU core/CPU for training
|
46 |
+
save_steps=10_000, # Save checkpoint every 10,000 steps
|
47 |
+
save_total_limit=2, # Limit the total amount of checkpoints, delete the older ones
|
48 |
+
logging_dir='./logs', # Directory for storing logs
|
49 |
+
logging_steps=500, # Log every 500 steps
|
50 |
+
eval_strategy="epoch", # Evaluate at the end of each epoch
|
51 |
+
learning_rate = 0.01,
|
52 |
+
)
|
53 |
+
|
54 |
+
# Initialize the Trainer
|
55 |
+
trainer = Trainer(
|
56 |
+
model=model, # The pre-trained model to be fine-tuned
|
57 |
+
args=training_args, # Training arguments
|
58 |
+
train_dataset=tokenized_train_dataset, # Tokenized training dataset
|
59 |
+
eval_dataset=tokenized_eval_dataset,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Train the model
|
63 |
+
trainer.train()
|
64 |
+
|
65 |
+
# Save the fine-tuned model and tokenizer
|
66 |
+
model.save_pretrained("./fine-tuned-gpt2")
|
67 |
+
tokenizer.save_pretrained("./fine-tuned-gpt2")
|
68 |
+
|
69 |
+
# Evaluate the model
|
70 |
+
results = trainer.evaluate()
|
71 |
+
print(results)
|
tiny-gpt2-fine-tuning/fine-tuning2.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
2 |
+
from datasets import Dataset
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from transformers import EarlyStoppingCallback
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the tokenizer and model dynamically
|
10 |
+
model_name = "sshleifer/tiny-gpt2" # Replace with any GPT-2 model (e.g., "gpt2" or "gpt2-medium")
|
11 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
12 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Ensure the tokenizer has a pad token
|
15 |
+
if tokenizer.pad_token is None:
|
16 |
+
tokenizer.pad_token = tokenizer.eos_token
|
17 |
+
|
18 |
+
# Function to read and process the text file into a list of texts
|
19 |
+
def read_text_file(file_path):
|
20 |
+
with open(file_path, "r") as file:
|
21 |
+
text = file.read()
|
22 |
+
return text.splitlines()
|
23 |
+
|
24 |
+
# Load and process your data
|
25 |
+
file_path = "data.txt" # Replace with the path to your data.txt
|
26 |
+
texts = read_text_file(file_path)
|
27 |
+
|
28 |
+
# Shuffle and split the dataset more robustly
|
29 |
+
train_texts, eval_texts = train_test_split(texts, test_size=0.1, random_state=42)
|
30 |
+
train_dataset = Dataset.from_dict({"text": train_texts})
|
31 |
+
eval_dataset = Dataset.from_dict({"text": eval_texts})
|
32 |
+
|
33 |
+
# Tokenize the dataset and prepare labels
|
34 |
+
def tokenize_function(examples):
|
35 |
+
encoding = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=332)
|
36 |
+
encoding["labels"] = encoding["input_ids"].copy() # Labels are the same as input_ids
|
37 |
+
return encoding
|
38 |
+
|
39 |
+
# Tokenize datasets
|
40 |
+
tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
41 |
+
tokenized_eval_dataset = eval_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
42 |
+
|
43 |
+
# Data collator for language modeling to handle dynamic padding
|
44 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
45 |
+
|
46 |
+
# Set up advanced training arguments
|
47 |
+
training_args = TrainingArguments(
|
48 |
+
output_dir="./results", # Output directory for model predictions and checkpoints
|
49 |
+
overwrite_output_dir=True, # Overwrite the content of the output directory
|
50 |
+
num_train_epochs=10, # Number of training epochs
|
51 |
+
per_device_train_batch_size=2, # Batch size per GPU/TPU core/CPU for training
|
52 |
+
per_device_eval_batch_size=2, # Batch size per GPU/TPU core/CPU for evaluation
|
53 |
+
save_steps=2_000, # Save checkpoint every 2,000 steps
|
54 |
+
save_total_limit=2, # Limit the total amount of checkpoints, delete the older ones
|
55 |
+
logging_dir='./logs', # Directory for storing logs
|
56 |
+
logging_steps=10, # Log every 100 steps
|
57 |
+
eval_strategy="steps", # Evaluate every X steps (set by `evaluation_strategy` argument) # Perform evaluation every N steps
|
58 |
+
learning_rate=0.01, # Lower learning rate for fine-tuning
|
59 |
+
weight_decay=0.01, # Weight decay to prevent overfitting
|
60 |
+
warmup_steps=64, # Number of steps to perform learning rate warmup
|
61 |
+
fp16=True, # Use 16-bit precision if supported by GPU
|
62 |
+
load_best_model_at_end=True, # Load the best model when training is finished
|
63 |
+
metric_for_best_model="loss", # Metric to use to compare the best model
|
64 |
+
greater_is_better=False, # Set to False as we're minimizing loss
|
65 |
+
disable_tqdm=False, # Show progress bar
|
66 |
+
)
|
67 |
+
|
68 |
+
# Early stopping to prevent overfitting
|
69 |
+
early_stopping = EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01)
|
70 |
+
|
71 |
+
# Custom evaluation metrics (e.g., perplexity)
|
72 |
+
def compute_metrics(eval_pred):
|
73 |
+
logits, labels = eval_pred
|
74 |
+
# Convert numpy arrays to PyTorch tensors
|
75 |
+
logits = torch.tensor(logits)
|
76 |
+
labels = torch.tensor(labels)
|
77 |
+
|
78 |
+
# Shift the logits and labels for loss calculation
|
79 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
80 |
+
shift_labels = labels[..., 1:].contiguous()
|
81 |
+
|
82 |
+
# Calculate perplexity
|
83 |
+
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100)
|
84 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
85 |
+
perplexity = torch.exp(loss)
|
86 |
+
|
87 |
+
return {"perplexity": perplexity.item()}
|
88 |
+
|
89 |
+
# Initialize the Trainer with advanced settings
|
90 |
+
trainer = Trainer(
|
91 |
+
model=model, # The pre-trained model to be fine-tuned
|
92 |
+
args=training_args, # Training arguments
|
93 |
+
train_dataset=tokenized_train_dataset, # Tokenized training dataset
|
94 |
+
eval_dataset=tokenized_eval_dataset, # Tokenized evaluation dataset
|
95 |
+
data_collator=data_collator, # Data collator for dynamic padding
|
96 |
+
compute_metrics=compute_metrics, # Custom evaluation metrics
|
97 |
+
callbacks=[early_stopping], # Early stopping callback
|
98 |
+
)
|
99 |
+
|
100 |
+
# Train the model
|
101 |
+
trainer.train()
|
102 |
+
|
103 |
+
# Save the fine-tuned model and tokenizer
|
104 |
+
model_output_dir = "./fine-tuned-gpt2"
|
105 |
+
os.makedirs(model_output_dir, exist_ok=True)
|
106 |
+
model.save_pretrained(model_output_dir)
|
107 |
+
tokenizer.save_pretrained(model_output_dir)
|
108 |
+
|
109 |
+
# Evaluate the model
|
110 |
+
results = trainer.evaluate()
|
111 |
+
print(f"Evaluation Results: {results}")
|