--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized using the config from [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) but with smaller size. Codes: ```python import os import torch import transformers from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed) model_id = "microsoft/Phi-3.5-mini-instruct" repo_id = "yujiepan/phi-3.5-tiny-random" save_path = f"/tmp/{repo_id}" config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) config.hidden_size = 16 config.intermediate_size = 32 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.num_key_value_heads = 4 config.rope_scaling['long_factor'] = [1.0299, 1.0499] config.rope_scaling['short_factor'] = [1.05, 1.05] tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.save_pretrained(save_path) model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, # attn_implementation="sdpa", trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( model_id, trust_remote_code=True ) set_seed(42) with torch.no_grad(): for _, p in sorted(model.named_parameters()): torch.nn.init.uniform_(p, -0.2, 0.2) model.save_pretrained(save_path) pipe = pipeline("text-generation", model=save_path, device="cuda", trust_remote_code=True, max_new_tokens=20) print(pipe("Hello World!")) ```