yeyongyu commited on
Commit
e2fc30d
·
1 Parent(s): bfb09ef

add: add model readme

Browse files
Files changed (1) hide show
  1. README.md +144 -1
README.md CHANGED
@@ -12,4 +12,147 @@ pipeline_tag: question-answering
12
  tags:
13
  - text-generation-inference
14
  - role-playing
15
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  tags:
13
  - text-generation-inference
14
  - role-playing
15
+ ---
16
+
17
+ # Qwen2-7B-BD-RP
18
+
19
+ ## Introduction 🎉
20
+
21
+ Qwen2-7B-BD-RP is a large language model (LLM) fine-tuned on the BeyondDialogue dataset. The model is designed to generate responses in a role-playing setting. The model is capable of generating high-quality responses in a variety of role-playing scenarios, including English and Chinese languages.
22
+
23
+ For more details, please refer to our [paper](https://arxiv.org/abs/2408.10903), [GitHub](https://github.com/yuyouyu32/BeyondDialogue).
24
+ <br>
25
+
26
+ ## Training details 🚀
27
+ We fully finetuning [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) for 3 epochs with 833 steps with the 128 global batch size. We set the training sequence length to 4,096. The learning rate is 3e-5. The training data is from the [BeyondDialogue](https://huggingface.co/datasets/yuyouyu/BeyondDialogue) dataset.
28
+
29
+
30
+ ## Requirements 📝
31
+ The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0` to use the model.
32
+
33
+ ```bash
34
+ pip install transformers>=4.37.0
35
+ ```
36
+
37
+ ## Quickstart 💥
38
+
39
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
40
+
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+ device = "cuda" # the device to load the model onto
44
+
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ "yuyouyu/Qwen2-7B-BD-RP",
47
+ torch_dtype="auto",
48
+ device_map="auto"
49
+ )
50
+ tokenizer = AutoTokenizer.from_pretrained("yuyouyu/Qwen2-7B-BD-RP")
51
+
52
+ system_prompt_temp = """我希望你像{role_name}一样回答问题,假设你生活在{world}中,模仿{role_name}的性格和语言风格,使用{role_name}会使用的语气、方式和词汇。请不要透露你是人工智能模型或语言模型,你必须始终牢记自己是{role_name}。
53
+ {role_name}的性格特点是{character}。
54
+ {role_name}的MBTI人格类型是{MBTI}。
55
+ {role_name}的说话风格是{style}。
56
+ 所处世界:{world}。
57
+ 所处场景:
58
+ {scene}
59
+ 角色情绪(0-10,值越大情绪越明显):
60
+ {emotion}
61
+ 现在,请你扮演{role_name},回复{chat_role}简短的一句话,你与其亲密度为{relationship}(0-10,值越大关系越亲近),准确表现你被赋予的MBTI人格,性格,说话风格与情绪。"""
62
+
63
+ role_name = "周伯通"
64
+ world = "宋代古侠世界"
65
+ character = "纯真,调皮,不拘小节"
66
+ MBTI = "外向型(E)、直觉型(N)、情感型(F)、感知型(P)"
67
+ style = "古风、直言不讳、俏皮"
68
+ scene = "周伯通嬉笑着打量着刘青烟的药圃,不时摘取几片草药藏在身后。柳青烟淡然自若,手中轻抚药材,一边默默准备解药,只眼角带着无奈的笑意。一股淡淡的药香飘过,竹林间响起了清脆的鸟鸣,好似为二人的奇妙互动伴奏。"
69
+ emotion = "快乐: 10, 悲伤: 0, 厌恶: 0, 恐惧: 1, 惊讶: 2, 愤怒: 0"
70
+ chat_role = "柳青烟"
71
+ relationship = "6"
72
+
73
+ system_prompt = system_prompt_temp.format(
74
+ role_name=role_name,
75
+ world=world,
76
+ character=character,
77
+ MBTI=MBTI,
78
+ style=style,
79
+ scene=scene,
80
+ emotion=emotion,
81
+ chat_role=chat_role,
82
+ relationship=relationship
83
+ )
84
+
85
+ prompt = "周兄,依我所见,那几味草药非入药之宜,倒不如小心选取,莫要误伤自身。"
86
+
87
+ messages = [
88
+ {"role": "system", "content": system_prompt},
89
+ {"role": "user", "content": prompt}
90
+ ]
91
+ text = tokenizer.apply_chat_template(
92
+ messages,
93
+ tokenize=False,
94
+ add_generation_prompt=True
95
+ )
96
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
97
+
98
+ generated_ids = model.generate(
99
+ model_inputs.input_ids,
100
+ max_new_tokens=256,
101
+ do_sample=True,
102
+ temperature=0.7,
103
+ repetition_penalty=1.2,
104
+ )
105
+
106
+ generated_ids = [
107
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
108
+ ]
109
+
110
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
111
+ ```
112
+
113
+ > [!IMPORTANT]
114
+ > **Note:** The examples for Qwen2-7B use Chinese role-playing. For English examples, please refer to our other training model repository -- [Mistral-Nemo-BD-RP](https://huggingface.co/yuyouyu/Mistral-Nemo-BD-RP).
115
+
116
+ ## Evaluation 🏆
117
+
118
+ We use objective questions to assess eight dimensions: **Character, Style, Emotion, Relationship, Personality, Human-likeness, Coherence, and Role Consistency**. The metric design can be find in our [paper](https://arxiv.org/abs/2408.10903). The evaluation code can be found in [GitHub](https://github.com/yuyouyu32/BeyondDialogue/tree/main/AutoRPEval). The results are shown below:
119
+
120
+ | **Model** | **Character ↑** | **Style ↑** | **Emotion ↓** | **Relationship ↓** | **Personality ↑** | **Avg. ↑** | **Human-likeness ↑** | **Role Choice ↑** | **Coherence ↑** |
121
+ |------------------------------|---------------|---------------|---------------|------------------|-----------------|----------------|----------------------|-------------------|-----------------|
122
+ | **General Baselines(Proprietary)** |
123
+ | GPT-4o | 74.32 ± 1.15 | **81.67 ± 1.51** | 16.31 ± 0.48 | **12.13 ± 0.66** | 66.58 ± 4.41 | 78.83 ± 1.64 | **67.33 ± 3.95** | **87.33 ± 3.86** | **99.67 ± 0.33**|
124
+ | GPT-3.5-Turbo | 72.26 ± 1.27 | 73.66 ± 1.73 | 17.79 ± 0.56 | 14.17 ± 0.73 | 66.92 ± 4.85 | 76.18 ± 1.83 | 33.33 ± 4.43 | 83.00 ± 4.68 | 97.33 ± 1.17 |
125
+ | Moonshot-v1-8k | 74.06 ± 1.19 | 80.64 ± 1.51 | 16.17 ± 0.47 | 13.42 ± 0.70 | 67.00 ± 4.87 | 78.42 ± 1.75 | 44.00 ± 4.33 | 86.67 ± 3.75 | 99.33 ± 0.46 |
126
+ | Yi-Large-Turbo | 75.13 ± 1.22 | 79.18 ± 1.58 | 16.44 ± 0.49 | 13.48 ± 0.67 | **68.25 ± 4.61**| 78.53 ± 1.72 | 47.00 ± 4.60 | 84.33 ± 3.67 | 92.67 ± 2.39 |
127
+ | Deepseek-Chat | **75.46 ± 1.14** | 81.49 ± 1.51 | **15.92 ± 0.46** | 12.42 ± 0.63 | 67.92 ± 4.57 | **79.30 ± 1.66**| 52.33 ± 4.95 | 83.00 ± 4.68 | 96.67 ± 1.00 |
128
+ | Baichuan4 | 71.82 ± 1.25 | 76.92 ± 1.52 | 17.57 ± 0.52 | 12.30 ± 0.62 | 67.08 ± 4.75 | 77.19 ± 1.73 | 45.33 ± 4.31 | 82.33 ± 4.49 | 99.33 ± 0.46 |
129
+ | Hunyuan | 73.77 ± 1.18 | 78.75 ± 1.56 | 17.24 ± 0.48 | 13.22 ± 0.68 | 67.00 ± 4.39 | 77.81 ± 1.66 | 53.00 ± 4.29 | 84.33 ± 4.52 | 98.33 ± 0.84 |
130
+ | **Role-play Expertise Baselines** |
131
+ | Index-1.9B-Character | 73.33 ± 1.32 | 76.48 ± 1.50 | 17.99 ± 0.53 | 13.58 ± 0.71 | 66.33 ± 4.57 | 76.92 ± 1.73 | 21.67 ± 3.96 | 78.67 ± 5.14 | 69.67 ± 3.85 |
132
+ | CharacterGLM-6B | 73.36 ± 1.28 | 76.08 ± 1.55 | 18.58 ± 0.55 | 14.27 ± 0.79 | 67.33 ± 4.34 | 76.79 ± 1.70 | 16.00 ± 2.38 | 81.00 ± 4.40 | 25.67 ± 3.48 |
133
+ | Baichuan-NPC-Turbo | **75.19 ± 1.23** | **79.15 ± 1.38** | **17.24 ± 0.51** | **13.10 ± 0.69** | 65.33 ± 4.84 | **77.87 ± 1.73**| **56.00 ± 4.66** | **86.33 ± 4.90** | **99.00 ± 0.56**|
134
+ | **General Baselines(Open-source)** |
135
+ | Yi-1.5-9B-Chat | 75.31 ± 1.20 | 76.78 ± 1.49 | 16.67 ± 0.52 | 12.75 ± 0.66 | 67.42 ± 4.63 | 78.02 ± 1.70| 38.67 ± 4.39 | 84.00 ± 4.61 | 92.67 ± 1.79 |
136
+ | GLM-4-9b-chat | 74.26 ± 1.19 | 78.40 ± 1.55 | 17.18 ± 0.50 | 14.48 ± 0.74 | 67.17 ± 4.93 | 77.63 ± 1.78 | 47.67 ± 4.25 | 83.33 ± 4.51 | 99.33 ± 0.46|
137
+ | Mistral-Nemo-Instruct-2407 | 74.12 ± 1.17 | 77.04 ± 1.48 | 17.00 ± 0.43 | 13.50 ± 0.67 | 67.00 ± 4.30 | 77.53 ± 1.61 | 53.67 ± 4.66 | 82.67 ± 4.77 | 74.33 ± 3.77 |
138
+ | Qwen2-7B-Instruct | 75.39 ± 1.13 | 77.68 ± 1.65 | 17.64 ± 0.56 | 13.43 ± 0.7 | 67.75 ± 4.44| 77.95 ± 1.70 | 48.00 ± 4.66 | 83.33 ± 4.48 | 99.00 ± 0.56 |
139
+ | **Qwen2-7B-BD-RP** | **78.67 ± 1.12***| **82.52 ± 1.33***| **15.68 ± 0.5*** | **11.22 ± 0.72***| **69.67 ± 4.27**| **80.79 ± 1.59***| **64.33 ± 3.80*** | **87.33 ± 3.74** | **99.00 ± 0.56**|
140
+
141
+
142
+ ## Citation 📖
143
+
144
+ **Please cite our work if you found the resources in this repository useful:**
145
+
146
+ ```bibtex
147
+ @article{yu2024beyond,
148
+ title = {BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model},
149
+ author = {Yu, Yeyong and Yu, Runsheng and Wei, Haojie and Zhang, Zhanqiu and Qian, Quan},
150
+ year = {2024},
151
+ journal = {arXiv preprint arXiv:2408.10903},
152
+ }
153
+ ```
154
+
155
+
156
+ ## Acknowledgements 🥰
157
+
158
+ We would like to express our sincere gratitude to **Tencent LightSpeed Studios** for their invaluable support in this project. Their contributions and encouragement have been instrumental in the successful completion of our work.