|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from typing import ( |
|
Callable, |
|
Dict, |
|
Final, |
|
List, |
|
Literal, |
|
Optional, |
|
Sequence, |
|
Set, |
|
Tuple, |
|
Type, |
|
Union, |
|
) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.layers import ( |
|
AttentionPoolLatent, |
|
DropPath, |
|
LayerType, |
|
Mlp, |
|
PatchDropout, |
|
PatchEmbed, |
|
resample_abs_pos_embed, |
|
) |
|
from timm.models._manipulate import checkpoint_seq, named_apply |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): |
|
|
|
r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first |
|
convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype. |
|
Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn |
|
from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
|
|
with torch.no_grad(): |
|
dtype = tensor.dtype |
|
tensor_fp32 = tensor.float() |
|
tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b) |
|
tensor_dtype = tensor_fp32.to(dtype=dtype) |
|
tensor.copy_(tensor_dtype) |
|
|
|
|
|
def init_weights(self): |
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5) |
|
trunc_normal_(self.latent, std=self.latent_dim**-0.5) |
|
|
|
|
|
def init_weights_vit_timm(module: nn.Module, name: str = "") -> None: |
|
"""ViT weight initialization, original timm impl (for reproducibility)""" |
|
if isinstance(module, nn.Linear): |
|
trunc_normal_(module.weight, std=0.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif hasattr(module, "init_weights"): |
|
module.init_weights() |
|
|
|
|
|
class Attention(nn.Module): |
|
fused_attn: Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
|
|
self.fused_attn = True |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, self.head_dim) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
init_values: float = 1e-5, |
|
inplace: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
proj_drop: float = 0.0, |
|
attn_drop: float = 0.0, |
|
init_values: Optional[float] = None, |
|
drop_path: float = 0.0, |
|
act_layer: nn.Module = nn.GELU, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
mlp_layer: nn.Module = Mlp, |
|
) -> None: |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
norm_layer=norm_layer, |
|
) |
|
self.ls1 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = mlp_layer( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
self.ls2 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
"""Vision Transformer |
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` |
|
- https://arxiv.org/abs/2010.11929 |
|
""" |
|
|
|
dynamic_img_size: Final[bool] |
|
|
|
def __init__( |
|
self, |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
patch_size: Union[int, Tuple[int, int]] = 16, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: Literal["", "avg", "token", "map"] = "token", |
|
embed_dim: int = 768, |
|
depth: int = 12, |
|
num_heads: int = 12, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = True, |
|
qk_norm: bool = False, |
|
init_values: Optional[float] = None, |
|
class_token: bool = True, |
|
no_embed_class: bool = False, |
|
reg_tokens: int = 0, |
|
pre_norm: bool = False, |
|
fc_norm: Optional[bool] = None, |
|
dynamic_img_size: bool = False, |
|
dynamic_img_pad: bool = False, |
|
drop_rate: float = 0.0, |
|
pos_drop_rate: float = 0.0, |
|
patch_drop_rate: float = 0.0, |
|
proj_drop_rate: float = 0.0, |
|
attn_drop_rate: float = 0.0, |
|
drop_path_rate: float = 0.0, |
|
weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "", |
|
embed_layer: Callable = PatchEmbed, |
|
norm_layer: Optional[LayerType] = None, |
|
act_layer: Optional[LayerType] = None, |
|
block_fn: Type[nn.Module] = Block, |
|
mlp_layer: Type[nn.Module] = Mlp, |
|
ignore_head: bool = False, |
|
) -> None: |
|
""" |
|
Args: |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
in_chans: Number of image input channels. |
|
num_classes: Mumber of classes for classification head. |
|
global_pool: Type of global pooling for final sequence (default: 'token'). |
|
embed_dim: Transformer embedding dimension. |
|
depth: Depth of transformer. |
|
num_heads: Number of attention heads. |
|
mlp_ratio: Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias: Enable bias for qkv projections if True. |
|
init_values: Layer-scale init values (layer-scale enabled if not None). |
|
class_token: Use class token. |
|
no_embed_class: Don't include position embeddings for class (or reg) tokens. |
|
reg_tokens: Number of register tokens. |
|
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'. |
|
drop_rate: Head dropout rate. |
|
pos_drop_rate: Position embedding dropout rate. |
|
attn_drop_rate: Attention dropout rate. |
|
drop_path_rate: Stochastic depth rate. |
|
weight_init: Weight initialization scheme. |
|
embed_layer: Patch embedding layer. |
|
norm_layer: Normalization layer. |
|
act_layer: MLP activation layer. |
|
block_fn: Transformer block layer. |
|
""" |
|
super().__init__() |
|
assert global_pool in ("", "avg", "token", "map") |
|
assert class_token or global_pool != "token" |
|
use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm |
|
|
|
|
|
norm_layer = partial(nn.LayerNorm, eps=1e-6) |
|
act_layer = nn.GELU |
|
|
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.num_features = self.embed_dim = ( |
|
embed_dim |
|
) |
|
self.num_prefix_tokens = 1 if class_token else 0 |
|
self.num_prefix_tokens += reg_tokens |
|
self.num_reg_tokens = reg_tokens |
|
self.has_class_token = class_token |
|
self.no_embed_class = ( |
|
no_embed_class |
|
) |
|
self.dynamic_img_size = dynamic_img_size |
|
self.grad_checkpointing = False |
|
self.ignore_head = ignore_head |
|
|
|
embed_args = {} |
|
if dynamic_img_size: |
|
|
|
embed_args.update(dict(strict_img_size=False, output_fmt="NHWC")) |
|
self.patch_embed = embed_layer( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
bias=not pre_norm, |
|
dynamic_img_pad=dynamic_img_pad, |
|
**embed_args, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = ( |
|
nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None |
|
) |
|
self.reg_token = ( |
|
nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None |
|
) |
|
embed_len = ( |
|
num_patches if no_embed_class else num_patches + self.num_prefix_tokens |
|
) |
|
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) |
|
self.pos_drop = nn.Dropout(p=pos_drop_rate) |
|
if patch_drop_rate > 0: |
|
self.patch_drop = PatchDropout( |
|
patch_drop_rate, |
|
num_prefix_tokens=self.num_prefix_tokens, |
|
) |
|
else: |
|
self.patch_drop = nn.Identity() |
|
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() |
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, depth) |
|
] |
|
self.blocks = nn.Sequential( |
|
*[ |
|
block_fn( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
init_values=init_values, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
mlp_layer=mlp_layer, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() |
|
|
|
|
|
if global_pool == "map": |
|
AttentionPoolLatent.init_weights = init_weights |
|
self.attn_pool = AttentionPoolLatent( |
|
self.embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
norm_layer=norm_layer, |
|
) |
|
else: |
|
self.attn_pool = None |
|
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = ( |
|
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
|
|
if weight_init != "skip": |
|
self.init_weights(weight_init) |
|
|
|
def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None: |
|
assert mode in ("jax", "jax_nlhb", "moco", "") |
|
|
|
trunc_normal_(self.pos_embed, std=0.02) |
|
if self.cls_token is not None: |
|
nn.init.normal_(self.cls_token, std=1e-6) |
|
named_apply(init_weights_vit_timm, self) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self) -> Set: |
|
return {"pos_embed", "cls_token", "dist_token"} |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse: bool = False) -> Dict: |
|
return dict( |
|
stem=r"^cls_token|pos_embed|patch_embed", |
|
blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))], |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable: bool = True) -> None: |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool=None) -> None: |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
assert global_pool in ("", "avg", "token", "map") |
|
if global_pool == "map" and self.attn_pool is None: |
|
assert ( |
|
False |
|
), "Cannot currently add attention pooling in reset_classifier()." |
|
elif global_pool != "map " and self.attn_pool is not None: |
|
self.attn_pool = None |
|
self.global_pool = global_pool |
|
self.head = ( |
|
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
|
|
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.dynamic_img_size: |
|
B, H, W, C = x.shape |
|
pos_embed = resample_abs_pos_embed( |
|
self.pos_embed, |
|
(H, W), |
|
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, |
|
) |
|
x = x.view(B, -1, C) |
|
else: |
|
pos_embed = self.pos_embed |
|
|
|
to_cat = [] |
|
if self.cls_token is not None: |
|
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) |
|
if self.reg_token is not None: |
|
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) |
|
|
|
if self.no_embed_class: |
|
|
|
|
|
x = x + pos_embed |
|
if to_cat: |
|
x = torch.cat(to_cat + [x], dim=1) |
|
else: |
|
|
|
|
|
if to_cat: |
|
x = torch.cat(to_cat + [x], dim=1) |
|
x = x + pos_embed |
|
|
|
return self.pos_drop(x) |
|
|
|
def _intermediate_layers( |
|
self, |
|
x: torch.Tensor, |
|
n: Union[int, Sequence] = 1, |
|
) -> List[torch.Tensor]: |
|
outputs, num_blocks = [], len(self.blocks) |
|
take_indices = set( |
|
range(num_blocks - n, num_blocks) if isinstance(n, int) else n |
|
) |
|
|
|
|
|
x = self.patch_embed(x) |
|
x = self._pos_embed(x) |
|
x = self.patch_drop(x) |
|
x = self.norm_pre(x) |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if i in take_indices: |
|
outputs.append(x) |
|
|
|
return outputs |
|
|
|
def get_intermediate_layers( |
|
self, |
|
x: torch.Tensor, |
|
n: Union[int, Sequence] = 1, |
|
reshape: bool = False, |
|
return_prefix_tokens: bool = False, |
|
norm: bool = False, |
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: |
|
"""Intermediate layer accessor (NOTE: This is a WIP experiment). |
|
Inspired by DINO / DINOv2 interface |
|
""" |
|
|
|
outputs = self._intermediate_layers(x, n) |
|
if norm: |
|
outputs = [self.norm(out) for out in outputs] |
|
prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs] |
|
outputs = [out[:, self.num_prefix_tokens :] for out in outputs] |
|
|
|
if reshape: |
|
grid_size = self.patch_embed.grid_size |
|
outputs = [ |
|
out.reshape(x.shape[0], grid_size[0], grid_size[1], -1) |
|
.permute(0, 3, 1, 2) |
|
.contiguous() |
|
for out in outputs |
|
] |
|
|
|
if return_prefix_tokens: |
|
return tuple(zip(outputs, prefix_tokens)) |
|
return tuple(outputs) |
|
|
|
def forward_features(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_embed(x) |
|
x = self._pos_embed(x) |
|
x = self.patch_drop(x) |
|
x = self.norm_pre(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: |
|
if self.attn_pool is not None: |
|
x = self.attn_pool(x) |
|
elif self.global_pool == "avg": |
|
x = x[:, self.num_prefix_tokens :].mean(dim=1) |
|
elif self.global_pool: |
|
x = x[:, 0] |
|
x = self.fc_norm(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.forward_features(x) |
|
if not self.ignore_head: |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class SigLIPVisionCfg: |
|
width: int = 1152 |
|
layers: Union[Tuple[int, int, int, int], int] = 27 |
|
heads: int = 16 |
|
patch_size: int = 14 |
|
image_size: Union[Tuple[int, int], int] = 336 |
|
global_pool: str = "map" |
|
mlp_ratio: float = 3.7362 |
|
class_token: bool = False |
|
num_classes: int = 0 |
|
use_checkpoint: bool = False |
|
|
|
|
|
SigLIP_MODEL_CONFIG = { |
|
"siglip_so400m_patch14_384": { |
|
"image_size": 336, |
|
"patch_size": 14, |
|
"width": 1152, |
|
"layers": 27, |
|
"heads": 16, |
|
"mlp_ratio": 3.7362, |
|
"global_pool": "map", |
|
"use_checkpoint": False, |
|
}, |
|
"siglip_so400m_patch14_224": { |
|
"image_size": 224, |
|
"patch_size": 14, |
|
"width": 1152, |
|
"layers": 27, |
|
"heads": 16, |
|
"mlp_ratio": 3.7362, |
|
"global_pool": "map", |
|
"use_checkpoint": False, |
|
}, |
|
"siglip_large_patch16_384": { |
|
"image_size": 384, |
|
"patch_size": 16, |
|
"width": 1024, |
|
"layers": 24, |
|
"heads": 16, |
|
"mlp_ratio": 4, |
|
"global_pool": "map", |
|
"use_checkpoint": False, |
|
}, |
|
} |
|
|
|
|
|
def create_siglip_vit( |
|
model_name: str = "siglip_so400m_patch14_384", |
|
image_size: int = 384, |
|
select_layer: int = -1, |
|
ckpt_path: str = "", |
|
**kwargs, |
|
): |
|
assert ( |
|
model_name in SigLIP_MODEL_CONFIG.keys() |
|
), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}" |
|
|
|
vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name]) |
|
|
|
if select_layer <= 0: |
|
layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1) |
|
else: |
|
layers = min(vision_cfg.layers, select_layer) |
|
|
|
model = VisionTransformer( |
|
img_size=image_size, |
|
patch_size=vision_cfg.patch_size, |
|
embed_dim=vision_cfg.width, |
|
depth=layers, |
|
num_heads=vision_cfg.heads, |
|
mlp_ratio=vision_cfg.mlp_ratio, |
|
class_token=vision_cfg.class_token, |
|
global_pool=vision_cfg.global_pool, |
|
ignore_head=kwargs.get("ignore_head", True), |
|
weight_init=kwargs.get("weight_init", "skip"), |
|
num_classes=0, |
|
) |
|
|
|
if ckpt_path: |
|
state_dict = torch.load(ckpt_path, map_location="cpu") |
|
|
|
incompatible_keys = model.load_state_dict(state_dict, strict=False) |
|
print( |
|
f"SigLIP-ViT restores from {ckpt_path},\n" |
|
f"\tincompatible_keys:', {incompatible_keys}." |
|
) |
|
|
|
return model |
|
|