File size: 8,985 Bytes
d152c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) 2023, Tri Dao.
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py

from typing import Optional, Union

import torch
import triton
import triton.language as tl


# @triton.autotune(
#     configs=[
#         triton.Config({"BLOCK_M": 2}),
#         triton.Config({"BLOCK_M": 4}),
#         triton.Config({"BLOCK_M": 8}),
#         triton.Config({"BLOCK_M": 16}),
#     ],
#     key=["CACHE_KEY_SEQLEN", "BLOCK_K", "INTERLEAVED"],
# )
@triton.jit
def rotary_kernel(
    OUT,  # Pointers to matrices
    X,
    COS,
    SIN,
    CU_SEQLENS,
    SEQLEN_OFFSETS,  # this could be int or a pointer
    # Matrix dimensions
    seqlen,
    nheads,
    rotary_dim,
    seqlen_ro,
    CACHE_KEY_SEQLEN,
    # strides
    stride_out_batch,
    stride_out_seqlen,
    stride_out_nheads,
    stride_out_headdim,
    stride_x_batch,
    stride_x_seqlen,
    stride_x_nheads,
    stride_x_headdim,
    # Meta-parameters
    BLOCK_K: tl.constexpr,
    IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
    IS_VARLEN: tl.constexpr,
    INTERLEAVED: tl.constexpr,
    CONJUGATE: tl.constexpr,
    BLOCK_M: tl.constexpr,
):
    pid_m = tl.program_id(axis=0)
    pid_batch = tl.program_id(axis=1)
    pid_head = tl.program_id(axis=2)
    rotary_dim_half = rotary_dim // 2

    if not IS_VARLEN:
        X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
        OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
    else:
        start_idx = tl.load(CU_SEQLENS + pid_batch)
        seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
        X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
        OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads

    if pid_m * BLOCK_M >= seqlen:
        return
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    if not IS_SEQLEN_OFFSETS_TENSOR:
        rm_cs = rm + SEQLEN_OFFSETS
    else:
        rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
    rk = tl.arange(0, BLOCK_K)
    rk_half = tl.arange(0, BLOCK_K // 2)

    if not INTERLEAVED:
        # Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
        X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
        COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
        SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
        cos = tl.load(COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0).to(tl.float32)
        sin = tl.load(SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0).to(tl.float32)
        x0 = tl.load(X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0).to(tl.float32)
        x1 = tl.load(
            X + rotary_dim_half * stride_x_headdim,
            mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
            other=0.0,
        ).to(tl.float32)
        if CONJUGATE:
            sin = -sin
        o0 = x0 * cos - x1 * sin
        o1 = x0 * sin + x1 * cos
        # write back result
        OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
        tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
        tl.store(
            OUT + rotary_dim_half * stride_out_headdim,
            o1,
            mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
        )
    else:
        # We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
        # Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
        # Loading x0 will be fast but x1 will be slow.
        # Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
        # Then we do the calculation and use tl.where to pick put the right outputs for the even
        # and for the odd indices.
        rk_swap = rk + ((rk + 1) % 2) * 2 - 1  # 1, 0, 3, 2, 5, 4, ...
        rk_repeat = tl.arange(0, BLOCK_K) // 2
        X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
        X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
        COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
        SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
        cos = tl.load(
            COS,
            mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
            other=1.0,
        ).to(tl.float32)
        sin = tl.load(
            SIN,
            mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
            other=0.0,
        ).to(tl.float32)
        x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(tl.float32)
        x1 = tl.load(X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0).to(tl.float32)
        if CONJUGATE:
            sin = -sin
        x0_cos = x0 * cos
        x1_sin = x1 * sin
        out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
        OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
        tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))


def apply_rotary(
    x: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
    seqlen_offsets: Union[int, torch.Tensor] = 0,
    cu_seqlens: Optional[torch.Tensor] = None,
    max_seqlen: Optional[int] = None,
    interleaved: bool = False,
    inplace: bool = False,
    conjugate: bool = False,
) -> torch.Tensor:
    """
    Arguments:
        x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
            else (total_seqlen, nheads, headdim).
        cos: (seqlen_ro, rotary_dim / 2)
        sin: (seqlen_ro, rotary_dim / 2)
        seqlen_offsets: integer or integer tensor of size (batch,)
        cu_seqlens: (batch + 1,) or None
        max_seqlen: int
    Returns:
        y: (batch, seqlen, nheads, headdim)
    """
    is_varlen = cu_seqlens is not None
    if not is_varlen:
        batch, seqlen, nheads, headdim = x.shape
    else:
        assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed"
        _, nheads, headdim = x.shape
        batch_p_1 = cu_seqlens.shape[0]
        batch = batch_p_1 - 1
        seqlen = max_seqlen
    seqlen_ro, rotary_dim = cos.shape
    assert sin.shape == cos.shape
    rotary_dim *= 2
    assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
    assert headdim <= 256, "Only support headdim <= 256"
    assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"

    assert cos.dtype == sin.dtype, f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
    assert x.dtype == cos.dtype, f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"

    cos, sin = cos.contiguous(), sin.contiguous()
    if isinstance(seqlen_offsets, torch.Tensor):
        assert seqlen_offsets.shape == (batch,)
        assert seqlen_offsets.dtype in [torch.int32, torch.int64]
        seqlen_offsets = seqlen_offsets.contiguous()
    else:
        assert seqlen_offsets + seqlen <= seqlen_ro

    output = torch.empty_like(x) if not inplace else x
    if rotary_dim < headdim and not inplace:
        output[..., rotary_dim:].copy_(x[..., rotary_dim:])

    BLOCK_K = (
        32
        if rotary_dim <= 32
        else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
    )
    def grid(META): return (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads)  # noqa
    BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)

    # Need this, otherwise Triton tries to launch from cuda:0 and we get
    # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
    with torch.cuda.device(x.device.index):
        rotary_kernel[grid](
            output,  # data ptrs
            x,
            cos,
            sin,
            cu_seqlens,
            seqlen_offsets,
            seqlen,  # shapes
            nheads,
            rotary_dim,
            seqlen_ro,
            # key for triton cache (limit number of compilations)
            seqlen // 128,
            # batch_strides if not varlen else 0
            output.stride(0) if not is_varlen else 0,
            output.stride(-3),  # seqlen_stride or total_seqlen_stride
            output.stride(-2),  # nheads_stride
            output.stride(-1),  # headdim_stride
            # batch_strides if not varlen else 0
            x.stride(0) if not is_varlen else 0,
            x.stride(-3),  # seqlen stride or total_seqlen_stride
            x.stride(-2),  # nheads stride
            x.stride(-1),  # headdim stride
            BLOCK_K,
            isinstance(seqlen_offsets, torch.Tensor),
            is_varlen,
            interleaved,
            conjugate,
            BLOCK_M,
        )
    return output