|
import torch |
|
import torch.nn.functional as F |
|
|
|
import os |
|
import sys |
|
import cv2 |
|
import random |
|
import datetime |
|
import math |
|
import argparse |
|
import numpy as np |
|
|
|
import scipy.io as sio |
|
import zipfile |
|
from .net_s3fd import s3fd |
|
from .bbox import * |
|
|
|
|
|
def detect(net, img, device): |
|
img = img - np.array([104, 117, 123]) |
|
img = img.transpose(2, 0, 1) |
|
img = img.reshape((1,) + img.shape) |
|
|
|
if 'cuda' in device: |
|
torch.backends.cudnn.benchmark = True |
|
|
|
img = torch.from_numpy(img).float().to(device) |
|
BB, CC, HH, WW = img.size() |
|
with torch.no_grad(): |
|
olist = net(img) |
|
|
|
bboxlist = [] |
|
for i in range(len(olist) // 2): |
|
olist[i * 2] = F.softmax(olist[i * 2], dim=1) |
|
olist = [oelem.data.cpu() for oelem in olist] |
|
for i in range(len(olist) // 2): |
|
ocls, oreg = olist[i * 2], olist[i * 2 + 1] |
|
FB, FC, FH, FW = ocls.size() |
|
stride = 2**(i + 2) |
|
anchor = stride * 4 |
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) |
|
for Iindex, hindex, windex in poss: |
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride |
|
score = ocls[0, 1, hindex, windex] |
|
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4) |
|
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]) |
|
variances = [0.1, 0.2] |
|
box = decode(loc, priors, variances) |
|
x1, y1, x2, y2 = box[0] * 1.0 |
|
|
|
bboxlist.append([x1, y1, x2, y2, score]) |
|
bboxlist = np.array(bboxlist) |
|
if 0 == len(bboxlist): |
|
bboxlist = np.zeros((1, 5)) |
|
|
|
return bboxlist |
|
|
|
def batch_detect(net, imgs, device): |
|
imgs = imgs - np.array([104, 117, 123]) |
|
imgs = imgs.transpose(0, 3, 1, 2) |
|
|
|
if 'cuda' in device: |
|
torch.backends.cudnn.benchmark = True |
|
|
|
imgs = torch.from_numpy(imgs).float().to(device) |
|
BB, CC, HH, WW = imgs.size() |
|
with torch.no_grad(): |
|
olist = net(imgs) |
|
|
|
bboxlist = [] |
|
for i in range(len(olist) // 2): |
|
olist[i * 2] = F.softmax(olist[i * 2], dim=1) |
|
olist = [oelem.data.cpu() for oelem in olist] |
|
for i in range(len(olist) // 2): |
|
ocls, oreg = olist[i * 2], olist[i * 2 + 1] |
|
FB, FC, FH, FW = ocls.size() |
|
stride = 2**(i + 2) |
|
anchor = stride * 4 |
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05)) |
|
for Iindex, hindex, windex in poss: |
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride |
|
score = ocls[:, 1, hindex, windex] |
|
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4) |
|
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4) |
|
variances = [0.1, 0.2] |
|
box = batch_decode(loc, priors, variances) |
|
box = box[:, 0] * 1.0 |
|
|
|
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy()) |
|
bboxlist = np.array(bboxlist) |
|
if 0 == len(bboxlist): |
|
bboxlist = np.zeros((1, BB, 5)) |
|
|
|
return bboxlist |
|
|
|
def flip_detect(net, img, device): |
|
img = cv2.flip(img, 1) |
|
b = detect(net, img, device) |
|
|
|
bboxlist = np.zeros(b.shape) |
|
bboxlist[:, 0] = img.shape[1] - b[:, 2] |
|
bboxlist[:, 1] = b[:, 1] |
|
bboxlist[:, 2] = img.shape[1] - b[:, 0] |
|
bboxlist[:, 3] = b[:, 3] |
|
bboxlist[:, 4] = b[:, 4] |
|
return bboxlist |
|
|
|
|
|
def pts_to_bb(pts): |
|
min_x, min_y = np.min(pts, axis=0) |
|
max_x, max_y = np.max(pts, axis=0) |
|
return np.array([min_x, min_y, max_x, max_y]) |
|
|