zijuncheng commited on
Commit
ae13e33
·
1 Parent(s): 9c33cc5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imdb
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: results
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: imdb
21
+ type: imdb
22
+ config: plain_text
23
+ split: test
24
+ args: plain_text
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.9133333333333333
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9161290322580645
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.8875
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.9466666666666667
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # results
44
+
45
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2250
48
+ - Accuracy: 0.9133
49
+ - F1: 0.9161
50
+ - Precision: 0.8875
51
+ - Recall: 0.9467
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 4
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 16
75
+ - total_train_batch_size: 64
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - lr_scheduler_warmup_steps: 500
79
+ - num_epochs: 3
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
84
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
85
+ | 0.6922 | 0.98 | 46 | 0.6867 | 0.7433 | 0.6778 | 0.9101 | 0.54 |
86
+ | 0.2634 | 1.98 | 93 | 0.3428 | 0.8833 | 0.8736 | 0.9528 | 0.8067 |
87
+ | 0.1736 | 2.94 | 138 | 0.2250 | 0.9133 | 0.9161 | 0.8875 | 0.9467 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.31.0
93
+ - Pytorch 2.0.1
94
+ - Datasets 2.14.4
95
+ - Tokenizers 0.13.3