--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 - precision - recall model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9133333333333333 - name: F1 type: f1 value: 0.9161290322580645 - name: Precision type: precision value: 0.8875 - name: Recall type: recall value: 0.9466666666666667 --- # results This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2250 - Accuracy: 0.9133 - F1: 0.9161 - Precision: 0.8875 - Recall: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6922 | 0.98 | 46 | 0.6867 | 0.7433 | 0.6778 | 0.9101 | 0.54 | | 0.2634 | 1.98 | 93 | 0.3428 | 0.8833 | 0.8736 | 0.9528 | 0.8067 | | 0.1736 | 2.94 | 138 | 0.2250 | 0.9133 | 0.9161 | 0.8875 | 0.9467 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3