zkdeng commited on
Commit
7b51441
1 Parent(s): f5e92c3

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-base-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: 10-convnextv2-base-22k-384-finetuned-spiderTraining20-500
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 10-convnextv2-base-22k-384-finetuned-spiderTraining20-500
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1779
24
+ - Accuracy: 0.9489
25
+ - Precision: 0.9485
26
+ - Recall: 0.9477
27
+ - F1: 0.9476
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0005
47
+ - train_batch_size: 25
48
+ - eval_batch_size: 25
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 100
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 0.7479 | 1.0 | 80 | 0.5460 | 0.8238 | 0.8427 | 0.8154 | 0.8203 |
63
+ | 0.6232 | 2.0 | 160 | 0.4423 | 0.8619 | 0.8735 | 0.8584 | 0.8573 |
64
+ | 0.5591 | 3.0 | 240 | 0.4042 | 0.8769 | 0.8862 | 0.8662 | 0.8702 |
65
+ | 0.4503 | 4.0 | 320 | 0.3648 | 0.8839 | 0.8937 | 0.8811 | 0.8807 |
66
+ | 0.3479 | 5.0 | 400 | 0.3523 | 0.8989 | 0.8996 | 0.8956 | 0.8945 |
67
+ | 0.3144 | 6.0 | 480 | 0.2513 | 0.9189 | 0.9175 | 0.9164 | 0.9142 |
68
+ | 0.2779 | 7.0 | 560 | 0.2274 | 0.9289 | 0.9304 | 0.9234 | 0.9252 |
69
+ | 0.1958 | 8.0 | 640 | 0.2443 | 0.9289 | 0.9267 | 0.9285 | 0.9268 |
70
+ | 0.1479 | 9.0 | 720 | 0.2054 | 0.9399 | 0.9378 | 0.9383 | 0.9371 |
71
+ | 0.1533 | 10.0 | 800 | 0.1779 | 0.9489 | 0.9485 | 0.9477 | 0.9476 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.3
77
+ - Pytorch 2.0.1+cu117
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3