Model save
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-base-22k-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: 10-convnextv2-base-22k-384-finetuned-spiderTraining20-500
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 10-convnextv2-base-22k-384-finetuned-spiderTraining20-500
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1779
|
24 |
+
- Accuracy: 0.9489
|
25 |
+
- Precision: 0.9485
|
26 |
+
- Recall: 0.9477
|
27 |
+
- F1: 0.9476
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 25
|
48 |
+
- eval_batch_size: 25
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 100
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 0.7479 | 1.0 | 80 | 0.5460 | 0.8238 | 0.8427 | 0.8154 | 0.8203 |
|
63 |
+
| 0.6232 | 2.0 | 160 | 0.4423 | 0.8619 | 0.8735 | 0.8584 | 0.8573 |
|
64 |
+
| 0.5591 | 3.0 | 240 | 0.4042 | 0.8769 | 0.8862 | 0.8662 | 0.8702 |
|
65 |
+
| 0.4503 | 4.0 | 320 | 0.3648 | 0.8839 | 0.8937 | 0.8811 | 0.8807 |
|
66 |
+
| 0.3479 | 5.0 | 400 | 0.3523 | 0.8989 | 0.8996 | 0.8956 | 0.8945 |
|
67 |
+
| 0.3144 | 6.0 | 480 | 0.2513 | 0.9189 | 0.9175 | 0.9164 | 0.9142 |
|
68 |
+
| 0.2779 | 7.0 | 560 | 0.2274 | 0.9289 | 0.9304 | 0.9234 | 0.9252 |
|
69 |
+
| 0.1958 | 8.0 | 640 | 0.2443 | 0.9289 | 0.9267 | 0.9285 | 0.9268 |
|
70 |
+
| 0.1479 | 9.0 | 720 | 0.2054 | 0.9399 | 0.9378 | 0.9383 | 0.9371 |
|
71 |
+
| 0.1533 | 10.0 | 800 | 0.1779 | 0.9489 | 0.9485 | 0.9477 | 0.9476 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.33.3
|
77 |
+
- Pytorch 2.0.1+cu117
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.13.3
|