File size: 2,604 Bytes
19c6ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/convnextv2-femto-1k-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 10-convnextv2-femto-1k-224-finetuned-spiderTraining20-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10-convnextv2-femto-1k-224-finetuned-spiderTraining20-500

This model is a fine-tuned version of [facebook/convnextv2-femto-1k-224](https://huggingface.co/facebook/convnextv2-femto-1k-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4856
- Accuracy: 0.8388
- Precision: 0.8342
- Recall: 0.8349
- F1: 0.8332

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.9569        | 1.0   | 80   | 1.7758          | 0.5065   | 0.5330    | 0.5075 | 0.4959 |
| 1.05          | 2.0   | 160  | 0.9583          | 0.7207   | 0.7400    | 0.7158 | 0.7102 |
| 0.8342        | 3.0   | 240  | 0.7517          | 0.7568   | 0.7747    | 0.7420 | 0.7409 |
| 0.7           | 4.0   | 320  | 0.6801          | 0.7928   | 0.7921    | 0.7890 | 0.7826 |
| 0.5956        | 5.0   | 400  | 0.5913          | 0.8128   | 0.8130    | 0.8082 | 0.8061 |
| 0.572         | 6.0   | 480  | 0.5533          | 0.8278   | 0.8259    | 0.8223 | 0.8217 |
| 0.4786        | 7.0   | 560  | 0.5108          | 0.8348   | 0.8319    | 0.8308 | 0.8302 |
| 0.4201        | 8.0   | 640  | 0.5064          | 0.8318   | 0.8286    | 0.8248 | 0.8252 |
| 0.4486        | 9.0   | 720  | 0.4951          | 0.8408   | 0.8364    | 0.8363 | 0.8350 |
| 0.4382        | 10.0  | 800  | 0.4856          | 0.8388   | 0.8342    | 0.8349 | 0.8332 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3