--- license: apache-2.0 base_model: facebook/convnextv2-nano-22k-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-convnextv2-nano-22k-384-finetuned-spiderTraining20-500 results: [] --- # 10-convnextv2-nano-22k-384-finetuned-spiderTraining20-500 This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2966 - Accuracy: 0.9109 - Precision: 0.9058 - Recall: 0.9065 - F1: 0.9057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.7156 | 1.0 | 80 | 1.4314 | 0.6316 | 0.6182 | 0.6246 | 0.6155 | | 0.7565 | 2.0 | 160 | 0.6340 | 0.8168 | 0.8213 | 0.8074 | 0.8095 | | 0.5802 | 3.0 | 240 | 0.4632 | 0.8589 | 0.8566 | 0.8545 | 0.8539 | | 0.4767 | 4.0 | 320 | 0.4006 | 0.8759 | 0.8748 | 0.8710 | 0.8708 | | 0.3648 | 5.0 | 400 | 0.3529 | 0.8999 | 0.8976 | 0.8965 | 0.8960 | | 0.3623 | 6.0 | 480 | 0.3326 | 0.9059 | 0.9030 | 0.9031 | 0.9024 | | 0.3238 | 7.0 | 560 | 0.3178 | 0.8939 | 0.8910 | 0.8889 | 0.8892 | | 0.2975 | 8.0 | 640 | 0.3016 | 0.9079 | 0.9037 | 0.9029 | 0.9028 | | 0.2852 | 9.0 | 720 | 0.3090 | 0.9029 | 0.8979 | 0.8991 | 0.8974 | | 0.2893 | 10.0 | 800 | 0.2966 | 0.9109 | 0.9058 | 0.9065 | 0.9057 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3