File size: 2,106 Bytes
fb94d41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/convnextv2-tiny-22k-384
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: convnextv2-tiny-22k-384-finetuned-spiderTraining20-500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnextv2-tiny-22k-384-finetuned-spiderTraining20-500
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2472
- Accuracy: 0.9279
- Precision: 0.9271
- Recall: 0.9247
- F1: 0.9247
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.9602 | 1.0 | 125 | 0.7123 | 0.8148 | 0.8207 | 0.8080 | 0.8050 |
| 0.5216 | 2.0 | 250 | 0.3843 | 0.8909 | 0.8921 | 0.8893 | 0.8881 |
| 0.4456 | 3.0 | 375 | 0.2864 | 0.9179 | 0.9168 | 0.9099 | 0.9116 |
| 0.3673 | 4.0 | 500 | 0.2652 | 0.9229 | 0.9229 | 0.9200 | 0.9201 |
| 0.3069 | 5.0 | 625 | 0.2472 | 0.9279 | 0.9271 | 0.9247 | 0.9247 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|