--- language: - eu license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large-V3 Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: validation args: eu metrics: - name: Wer type: wer value: 13.28860142255536 --- # Whisper Large-V3 Basque This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.4180 - Wer: 13.2886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.1288 | 5.85 | 1000 | 0.2746 | 18.6000 | | 0.0262 | 11.7 | 2000 | 0.2894 | 16.0934 | | 0.0095 | 17.54 | 3000 | 0.3281 | 15.7348 | | 0.0056 | 23.39 | 4000 | 0.3362 | 14.7394 | | 0.0045 | 29.24 | 5000 | 0.3465 | 14.9912 | | 0.0032 | 35.09 | 6000 | 0.3599 | 14.7172 | | 0.002 | 40.94 | 7000 | 0.3624 | 14.4150 | | 0.0028 | 46.78 | 8000 | 0.3647 | 14.4553 | | 0.0019 | 52.63 | 9000 | 0.3726 | 14.4210 | | 0.0011 | 58.48 | 10000 | 0.3784 | 14.1268 | | 0.0011 | 64.33 | 11000 | 0.3753 | 14.2517 | | 0.0009 | 70.18 | 12000 | 0.3845 | 13.9193 | | 0.0008 | 76.02 | 13000 | 0.3910 | 14.0402 | | 0.0008 | 81.87 | 14000 | 0.3988 | 13.8488 | | 0.0004 | 87.72 | 15000 | 0.4002 | 13.5788 | | 0.0002 | 93.57 | 16000 | 0.4021 | 13.5526 | | 0.0002 | 99.42 | 17000 | 0.4121 | 13.5747 | | 0.0002 | 105.26 | 18000 | 0.4178 | 13.5989 | | 0.0005 | 111.11 | 19000 | 0.4135 | 13.3551 | | 0.0001 | 116.96 | 20000 | 0.4180 | 13.2886 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1