File size: 2,140 Bytes
6142a42
0b93425
 
6142a42
 
 
0b93425
6142a42
 
0b93425
6142a42
 
 
0b93425
6142a42
 
 
 
 
0b93425
 
6142a42
 
 
 
 
 
 
 
 
 
 
 
0b93425
6142a42
0b93425
6142a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- eu
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Tiny Basque
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_13_0 eu
      type: mozilla-foundation/common_voice_13_0
      config: eu
      split: validation
      args: eu
    metrics:
    - name: Wer
      type: wer
      value: 34.086924983376655
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Basque

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_13_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6509
- Wer: 34.0869

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.75e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3011        | 23.26  | 1000 | 0.6017          | 41.4677 |
| 0.0904        | 46.51  | 2000 | 0.5919          | 35.6284 |
| 0.0408        | 69.77  | 3000 | 0.6267          | 34.7095 |
| 0.0265        | 93.02  | 4000 | 0.6420          | 34.3932 |
| 0.0212        | 116.28 | 5000 | 0.6509          | 34.0869 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1