File size: 3,058 Bytes
8781c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- clupubhealth
metrics:
- rouge
model-index:
- name: pubhealth-expanded-1
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: clupubhealth
type: clupubhealth
config: expanded
split: test
args: expanded
metrics:
- name: Rouge1
type: rouge
value: 28.6755
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pubhealth-expanded-1
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the clupubhealth dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3198
- Rouge1: 28.6755
- Rouge2: 9.2869
- Rougel: 21.9675
- Rougelsum: 22.2946
- Gen Len: 19.85
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 120
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 3.6788 | 0.08 | 40 | 2.3758 | 29.5273 | 9.3588 | 22.4799 | 22.6212 | 19.835 |
| 3.4222 | 0.15 | 80 | 2.3484 | 29.0821 | 9.1988 | 22.3907 | 22.5996 | 19.88 |
| 3.3605 | 0.23 | 120 | 2.3500 | 29.2893 | 9.296 | 22.1247 | 22.4075 | 19.94 |
| 3.3138 | 0.31 | 160 | 2.3504 | 29.039 | 8.907 | 21.9631 | 22.2506 | 19.91 |
| 3.2678 | 0.39 | 200 | 2.3461 | 29.678 | 9.4429 | 22.3439 | 22.6962 | 19.92 |
| 3.2371 | 0.46 | 240 | 2.3267 | 28.535 | 9.1858 | 21.3721 | 21.6634 | 19.915 |
| 3.204 | 0.54 | 280 | 2.3330 | 29.0796 | 9.4283 | 21.8953 | 22.1867 | 19.885 |
| 3.1881 | 0.62 | 320 | 2.3164 | 29.1456 | 9.1919 | 21.9529 | 22.235 | 19.945 |
| 3.1711 | 0.69 | 360 | 2.3208 | 29.3212 | 9.4823 | 22.1643 | 22.4159 | 19.895 |
| 3.1752 | 0.77 | 400 | 2.3239 | 29.0408 | 9.3615 | 21.8007 | 22.0795 | 19.945 |
| 3.1591 | 0.85 | 440 | 2.3218 | 28.6336 | 9.2799 | 21.5843 | 21.9422 | 19.845 |
| 3.1663 | 0.93 | 480 | 2.3198 | 28.6755 | 9.2869 | 21.9675 | 22.2946 | 19.85 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|