Edit model card

0xnu/pmmlv2-fine-tuned-hausa

Hausa fine-tuned LLM using sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2.

Hausa words typically comprise diverse blends of vowels and consonants. The Hausa language boasts a vibrant phonetic framework featuring twenty-three consonants, five vowels, and two diphthongs. Words in Hausa can fluctuate in length and intricacy, but they usually adhere to uniform configurations of syllable arrangement and articulation. Additionally, Hausa words often incorporate diacritical marks like the apostrophe and macron to signify glottal stops and long vowels.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Embeddings

from sentence_transformers import SentenceTransformer
sentences = ["Tambarin talaka cikinsa", "Gwanin dokin wanda yake kansa"]

model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-hausa')
embeddings = model.encode(sentences)
print(embeddings)

Advanced Usage

from sentence_transformers import SentenceTransformer, util
import torch

# Define sentences in Hausa
sentences = [
    "Menene sunan babban birnin Ingila?",
    "Wanne dabba ne mafi zafi a duniya?",
    "Ta yaya zan iya koyon harshen Hausa?",
    "Wanne abinci ne mafi shahara a Najeriya?",
    "Wane irin kaya ake sawa don bikin Hausa?"
]

# Load the Hausa-trained model
model = SentenceTransformer('path/to/pmmlv2-fine-tuned-hausa')

# Compute embeddings
embeddings = model.encode(sentences, convert_to_tensor=True)

# Function to find the closest sentence
def find_closest_sentence(query_embedding, sentence_embeddings, sentences):
    # Compute cosine similarities
    cosine_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0]
    # Find the position of the highest score
    best_match_index = torch.argmax(cosine_scores).item()
    return sentences[best_match_index], cosine_scores[best_match_index].item()

query = "Menene sunan babban birnin Ingila?"
query_embedding = model.encode(query, convert_to_tensor=True)
closest_sentence, similarity_score = find_closest_sentence(query_embedding, embeddings, sentences)

print(f"Tambaya: {query}")
print(f"Jimla mafi kusa: {closest_sentence}")
print(f"Alamar kama: {similarity_score:.4f}")

# You can also try with a new sentence not in the original list
new_query = "Wanne sarki ne yake mulkin Kano a yanzu?"
new_query_embedding = model.encode(new_query, convert_to_tensor=True)
closest_sentence, similarity_score = find_closest_sentence(new_query_embedding, embeddings, sentences)

print(f"\nSabuwar Tambaya: {new_query}")
print(f"Jimla mafi kusa: {closest_sentence}")
print(f"Alamar kama: {similarity_score:.4f}")

License

This project is licensed under the MIT License.

Copyright

(c) 2024 Finbarrs Oketunji.

Downloads last month
5
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.