Model Card for llama_poetry_fa

Model Logo

Model Name: DivAIn (دیوان) – A Persian Poetry-Driven Llama-Based Language Model Model URL: https://huggingface.co/8lianno/llama_poetry_fa

Model Summary

llama_poetry_fa is a Persian poetry generation model fine-tuned from a Llama 3.1-based checkpoint. It aims to produce stylistically coherent, culturally relevant, and metrically sound verses in response to a user’s prompt. The model focuses on generating output that aligns with classical Persian poetic traditions, such as maintaining consistent rhyme schemes and thematic unity.

Model Details

Model Description

  • Developed by: 8lianno
  • Model type: Causal Language Model (Llama-based, instruction-tuned)
  • Language: Persian (fa)
  • License: MIT (Dedicated Model For Matrix AI)
  • Finetuned from: meta-llama/Llama-3.1-8B-Instruct

This model has been trained to understand Persian poetic structure, using additional tokens [شروع_شعر], [پایان_شعر], and [مصرع] to guide and maintain poem formatting. It can respond to various thematic prompts—whether about nature, love, historical figures, or abstract concepts—and produce a poem that attempts to follow Persian poetry norms.

Model Sources

Uses

Direct Use

This model is intended to generate Persian poetry in response to user prompts. It can be used as a creative writing aid, a tool for literary exploration, or as a source of inspiration for authors, poets, and students studying Persian literature.

Example:

  • Prompt: "درباره بهار شعری بسرایید"

  • Response:

    • عشق چون بهار به جان می افروزد
    • هر دم به گلستان دل می روزند
    • در شب سیاه، چون شمع می تابد
    • هر دم به عشق، جان می روزند
  • Prompt: "درباره دریا شعری بسرایید"

  • Response:

    • دریا آینه‌ی آسمان است
    • در سینه‌ی او، راز نهان است
    • هر موج او به ساحل می‌رسد
    • صد قصه‌ی عشق و غم و جان است
  • Prompt: "درباره عشق بنویسید"

  • Response:

    • امید چراغ راه بود
    • در ظلمت شب تاب بود
    • هر کس که با امید همره بود
    • صاحب گنج بی‌بند و بست بود
  • Prompt: "آسمان چرا می گرید؟"

  • Response:

    • آسمان ز عشق میگرید
    • از غم خورشید میگرید
    • هر کس که به دل عاشق شد
    • صد بهار در دل میگرید

Downstream Use

While primarily designed for poetry generation, the model can be integrated into:

  • Persian literature chatbots
  • Educational applications for Persian poetry studies
  • Cultural or literary heritage projects

Out-of-Scope Use

The model is not designed for:

  • Factual Question-Answering (it may produce poetic but factually incorrect answers)
  • Non-Persian text generation
  • High-stakes decision making

Bias, Risks, and Limitations

The model’s content is drawn from its training data and may reflect certain cultural or poetic biases. It might:

  • Present thematically repetitive motifs or styles from classical Persian poetry.
  • Struggle with modern or colloquial Persian forms.
  • Occasionally produce incoherent or repetitive verses.

Users should critically evaluate the generated text, especially if used in public-facing contexts.

Recommendations

  • Review generated poems for cultural appropriateness.
  • Verify factual accuracy independently.
  • Suggested for Indirect and Poetic answers.
  • For sensitive or controversial topics, consider human moderation.

How to Get Started with the Model

Poetry Generator Code

pip install -U transformers>=4.30.0
pip install -U accelerate
pip install bitsandbytes==0.42.0
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel

class PoetryGenerator:
    def __init__(self, model_path, token):
        self.token = token
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        # Configure quantization settings
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True
        )

        # Load tokenizer from the base model used during fine-tuning
        self.tokenizer = AutoTokenizer.from_pretrained(
            "meta-llama/Llama-3.1-8B-Instruct",
            token=token,
            trust_remote_code=True
        )
        self.tokenizer.pad_token = self.tokenizer.eos_token

        # Add the special tokens that were used during training
        special_tokens = {
            "additional_special_tokens": [
                "[شروع_شعر]",
                "[پایان_شعر]",
                "[مصرع]"
            ]
        }
        self.tokenizer.add_special_tokens(special_tokens)

        # Load the base model
        base_model = AutoModelForCausalLM.from_pretrained(
            "meta-llama/Llama-3.1-8B-Instruct",
            token=token,
            device_map="auto",
            trust_remote_code=True,
            torch_dtype=torch.float16,
            quantization_config=bnb_config
        )

        # Resize token embeddings to match tokenizer
        base_model.resize_token_embeddings(len(self.tokenizer))

        # Load the fine-tuned model from Hugging Face Hub
        self.model = PeftModel.from_pretrained(
            base_model,
            model_path,
            token=token,
            device_map="auto"
        )

        self.model.eval()

    def generate_poem(self, prompt):
        formatted_prompt = f"""سوال: {prompt}
لطفا یک شعر فارسی در پاسخ به این سوال بسرایید که دارای وزن و قافیه مناسب باشد.

شعر:"""

        inputs = self.tokenizer(formatted_prompt, return_tensors="pt", padding=True)
        inputs = {k: v.to(self.device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_length=512,
                num_return_sequences=1,
                temperature=0.7,
                top_p=0.9,
                do_sample=True,
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=self.tokenizer.eos_token_id
            )

        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

def main():
    # Use the Hugging Face Hub model path instead of a local path
    generator = PoetryGenerator(
        model_path="8lianno/llama_poetry_fa",
        token="<YOUR_HF_TOKEN>"
    )

    prompts = [
        "درباره بهار شعری بسرایید",
        "شعری درباره عشق بنویسید",
        "درباره دریا شعری بسرایید"
    ]

    print("=== Persian Poetry Generation ===\n")
    for i, prompt in enumerate(prompts, 1):
        print(f"\nPrompt {i}: {prompt}")
        print("\nGenerated Poetry:")
        try:
            poem = generator.generate_poem(prompt)
            print(poem)
            print("\n" + "="*50)
        except Exception as e:
            print(f"Error generating poem: {str(e)}")
            print(f"Error type: {type(e)}")

if __name__ == "__main__":
    main()
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for 8lianno/llama_poetry_fa

Quantized
(326)
this model